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Recently the computational-neuroscience literature on animals’ learning has
proposed some models for studying organisms’ decisions related to the energy
to invest in the execution of actions (“vigor”). These models are based on
average reinforcement learning algorithms which make it possible to reproduce
organisms’ behaviours and at the same time to link them to specific brain
mechanisms such as phasic and tonic dopamine-based neuromodulation. This
paper extends these models by explicitly introducing the dynamics of hunger,
driven by energy consumption and food ingestion, and the effects of hunger on
perceived reward and, consequently, vigor. The extended model is validated by
addressing some experiments carried out with real mice in which reinforcement
schedules delivering lower amounts of food can lead to a higher vigor compared
to schedules delivering larger amounts of food due to the higher perceived
reward caused by higher levels of hunger.
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1. Introduction

The action of dopamine neuromodulation is believed to exert a powerful
influence on vigor, that is the strength or rate of responding in behavioural
experiments. There are many psychological theories that attribute the vigor
effects to a variety of underlying psychological mechanisms, including incen-
tive salience,1,2 Pavlovian-instrumental interactions,3,4 and effort-benefit
tradeoffs.5 A different line of research, using the electrophysiological record-
ing of midbrain dopamine neurons’s activity in awake behaving monkeys,
suggests that the phasic spiking activity of dopamine cells reports to the
striatum a specific “prediction error” signal.6–9 Computational models have
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shown that this signal can be used efficiently both for learning to predict
rewards and for learning to choose actions so as to maximize reward in-
take.10–14 However, these theories have some important limitations. First,
they only try to explain choice between discrete actions whilst they do not
say anything about the strength or vigor of responding. Second, they gen-
erally assume that dopamine influences behaviour only indirectly by con-
trolling learning whereas dopamine might have other effects on behaviour.
Finally, they are only concerned with the phasic release of dopamine, while
the tonic level of dopamine constitutes a potentially distinct channel of
neuromodulation that might play a key role in energizing behaviour.15,16

Niv et al.17 proposed a normative account of response vigor which ex-
tends conventional reinforcement learning models of action choice to the
choice of vigor, that is to the energy expenditure that organisms associate
to the execution of chosen actions. To pursue this goal the authors use a
model of learning different from the model normally used to study phasic
dopamine and reward prediction error, namely the actor-critic model based
on the Temporal Difference learning rule.18 Rather, they use an actor-critic
model based on the average rate of reward. The average rate of reward ex-
erts significant influence over overall response propensities by acting as an
opportunity cost which quantifies the cost of sloth: if the average rate of
reward is high, every second in which a reward is not delivered is costly,
and therefore actions should be performed faster even if the energy costs
of doing so are greater. The converse is true if the average rate of reward
is low. In this way the authors show that optimal decision making on vigor
leads to choices with the characteristics of choices exhibited by mice and
rats in behavioural experiments.

Notwithstanding its pioneering value, the work of Niv et al.17 has two
limits which are addressed here. First, it does not study how food’s rein-
forcing value is influenced by the dynamics of internal needs, e.g. hunger.
Second, it studies only the steady state values of variables and not their dy-
namics during learning. This paper proposes a computational model which
includes a sophisticated internal regulation of hunger and allows investi-
gating behaviour during learning.The results are compared with data from
experiments carried out with real mice by Parisi.19

The rest of the paper is organised as follows. Section 2 descrives the
targeted experiments. Section 3 illustrates the model and the simulated
mice. Section 4 compares the behaviour of simulated and real mice. Finally,
Section 5 draws the conclusions.
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2. Target experiments

Parisi19 tested 36 mice in a linear corridor at the end of which they could
find a pellet of food, and measured the time they employed to reach the end
of the corridor. Here we interpret the speed of mice as an indicator of the
vigor invested in the execution of actions. Food was delivered according to
three different schedules of reinforcement to three different groups of mice:
(a) Fixed Ratio 100% (FR100): food was always delivered when the corridor
end was reached. (b) Fixed Ratio 50% (FR50): food was delivered only in
odd trials. (c) Random Ratio 50% (RR50): food was delivered randomly
with a probability of 50%.

Figure 1a shows the mice’s speed curves during learning along various
days of training (for each day the average performance for 6 trials is re-
ported). After each daily session the mice had free access to food for half
an hour and then were kept without food until the next day session. Figure
1b shows in detail the speed of mice related to FR50 and RR50, separately
for trials with and without food (respectively denoted with FR50+ and
FR50-. The graphs show that: (a) Mice trained with RR50 exhibited the
highest level of vigor, followed by the mice trained with FR100 and then
by those trained with FR50 (lowest vigor). The first goal of this paper is
to explain why FR100 led to a higher level of vigor with respect to FR50.
The high level of vigor exhibited by mice with RR50 was probably caused
by some energizing effects of the randomness of action outcomes and will
not be further discussed in the paper. (b) Figure 1b shows that FR50+ led
to a vigor lower than FR50-. Parisi explained this result suggesting that
the reward not only affects learning but it also allows mice to predict the
outcome of the succeeding trial (notice that this can happen in FR50, as
trials with and without reward alternate and so are predictable, but not
in RR50). A second goal of the paper is to validate this hypothesis with
the model. (c) Figure 1b also show that FR50+ led to a vigor higher than
FR100. At first sight, this is counterintuitive as the reward in FR50+ and
FR100 trials is identical. A third goal of the paper, the most important one,
is to explain this result in terms of dynamics of hunger, namely the fact
that higher levels of hunger can increase the perceived reward associated
with food. (d) Figure 1b also shows that before vigor levels reach a steady
state, FR50- produces the highest levels of vigor, in particular higher than
FR50+ and FR100. Parisi explained this by saying that the trials related
to FR50- were those taking place right after a rewarded trial (FR+ series).
The fourth goal of the paper is to specify and integrate this explanation.
Indeed, a further explanation is needed beyond that of Parisi as both FR50-
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and FR100 conditions involve trials following rewarded trials.

(a) (b)

Fig. 1. Results of the target experiments. In both graphs, the x-axis refers to successive
groups of 6 trials and the y-axis refers to mice’s speed (vigor) measured as 100 divided
by the number of seconds spent to cover the corridor. (a) The evolution of speed during
learning with the three schedules of reinforcement: the highest dashed curve refers to
RR50, the intermediate dotted curve to FR100, and the lowest continuous curve to FR50.
(b) Same data with separated curves for FR50+ and FR50- (highest dashed curves), and
for RR50+ and RR50- (continuous curves); the curve of FR100 is the same.

3. The model

3.1. The task

The simulated environment (Figure ??) is composed by a corridor measur-
ing 1.5 meters. In the experiments, the simulated mouse is placed at the left
end of the corridor and is required to decide the speed (vigor) with which
to move to the right end. When the mouse reaches the right end it can
eventually find (and “eat”) a reward (a unit of food) and then is replaced
at the start position. The food is delivered according to one of the three
reinforcement schedules illustrated in Section 4.

3.2. The actor-critic component of the model

The model is based on a neural-network implementation of the actor-critic
reinforcement learning model18 composed of two parts: the actor and the
critic (in its turn mainly formed by the evaluator). In general the model
is capable of learning to select appropriate actions in order to maximise
the sum of the future discounted rewards: the evaluator learns to associate
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evaluations with visited states on the basis of the rewards experienced after
these visits; the critic produces a one-step judgment of the actor’s actions
on the basis of the evaluations of couples of states visited in sequence; the
actor learns to associate suitable actions with the perceived states of the
environment on the basis of the critic’s judgment.

This model has been chosen, among the several available reinforcement-
learning models, because it has a considerable biological plausibility.20 In
particular, the model has several correspondences with the anatomy and
physiology of the basal ganglia, which are deep nuclei of vertebrates’ brain
playing a fundamental role in action selection.21

The model is now illustrated in detail. The model has tree input units:
(a) the first two units implement a memory of the outcome, in terms of
reward, obtained in the previous trial (in particular, the units are activated
with < 1, 0 > when the rat has consumed food in the preceding trial, and
with < 0, 1 > otherwise); (b) the third unit is a bias unit always activated
with 1.

The actor is a two-layer feed-forward neural network formed by the
three input units, denoted with xi, and by a sigmoidal output unit ranging
in [0, 1] and indirectly encoding vigor. The activation of the output unit is
used as the centre µ of a Gaussian probability density function σ having
standard deviation ς (set to 0.1) which is used to draw a random number
that represents the chosen vigor:

µ =
1

1 + exp[−Σiwai·xi]
y ∼ σ[µ, ς] (1)

where wai are the actor’s weights from the input units xi to output unit
y and “∼” indicates the probability density function of y (the Gaussian’s
tails are cut at 0 and 1 by redrawing new numbers when this range is
violated). The action y (the selected vigor) is drawn randomly “around µ”
as reinforcement learning models need a certain randomness to find suitable
solutions by trial-and-error. The activation of the output unit of the actor
is used to set the mouse’s speed (a maximum vigor of 1 corresponds to a
mouse’s step size measuring 1/10 of the corridor length).

The evaluator, which is part of the critic, is a network that uses the
activation of the three input units of the model to return, with its linear
output unit, an estimation of the theoretical evaluation of the world state
corresponding to the input pattern. The “theoretical evaluation” to be es-
timated, V , is defined as the sum of the future discounted rewards each
decreased of the average per-step long-term reinforcement:22–25
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V [t] = Eπ

[∑

k>t

[
R[k]−R

]
]

(2)

where Eπ is the expected sum of future rewards averaged over the possible
actions selected by the current action policy π expressed by the current
actor, R is the reinforcement, and R is the average (per-step) long-term
reinforcement. Note that, as suggested by Niv et. al,17 R might be thought
to correspond to the tonic dopamine level, encoding the opportunity cost
of each time unit engaged in any activity. With this respect, it is important
to notice that many experiments show that high levels of striatal dopamine
are strongly associated with an high rate of response, that is vigor.15,16

Interestingly, this happens even before phasic dopamine underlying learning
(and corresponding to the model’s surprise S[t] illustrated below) has a full
effect on action selection.2 In the simulations, R is estimated on the basis
of the experienced past rewards R. The evaluator produces an estimation
V̂ of the theoretical V :

R[t] = (1− κ)R[t− 1] + κR[t] V̂ [t] =
∑

i

[wvi[t]xi[t]] (3)

where wvi are the evaluator’s weights (0 < κ < 1 was set to 0.01).
The critic computes the surprise S[t] used to train (as illustrated below)

the evaluator to produce increasingly accurate V̂ and the actor to produce
actions leading to increasingly high and/or frequent rewards:

S[t] =
(
R[t]−R[t]

)
+ V̂ [t]− V̂ [t− 1] (4)

The evaluator uses the Temporal Difference algorithm (TD18) to learn
accurate estimations V̂ with experience as follows:

wvi[t] = wvi[t− 1] + ν · S[t] · xi[t− 1] (5)

where ν is a learning rate (set to 0.2).
The surprise signal is also used by the actor to improve its action policy.

In particular, when surprise is positive, the centres of the Gaussian functions
used to randomly draw the vigor level are made closer to the actually drawn
value, whereas when surprise is negative such centre is moved away” from
it. This is done by updating the actor’s weights as follows:

wai[t] = wai[t−1]+ζ ·S[t]·(y[t−1]−µ[t−1])·(µ[t−1](1−µ[t−1]))·xi[t−1] (6)
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where (µ[t−1](1−µ[t−1])) is the derivative, with respect to the activation
potential, of the actor sigmoid output units’ activation, ζ is a learning rate
(set to 0.2), (y[t − 1] − µ[t − 1]) is the part of the formula that moves the
centres of the Gaussian towards, or away from, the noisy vigor selected
by the actor when surprise S[t] is respectively positive or negative. The
motivation behind this updating rule is that a positive surprise indicates
that the action randomly selected by the actor at time t − 1 produced
reward effects at time t better than those expected by the evaluator at
time t − 1: this means that such drawn action is better than the “average
action” selected by the actor at time t− 1, as estimated by the evaluator,
and so such action should have an increased probability of being selected
in the future in correspondence to xi[t − 1]. A similar opposite reasoning
holds when surprise is negative.

3.3. The dynamics of costs, hunger, and perceived rewards

This section illustrates the novel part of the model related to the simulated
mouse’s energy need (hunger), the energy costs caused by action vigor, the
resulting energy balance, and the effects of this on the reward that the
mouse perceives when it eats the food. The model of Niv et al.17 already
considered a structure of costs similar to the one illustrated below; however,
it did not consider hunger and its effects on perceived rewards, as done here.

In every step, the mouse incurs in two types of costs: (a) a fixed unitary
(i.e. per step) cost FUC, set to 0.01; (b) a variable unitary cost VUC set to a
maximum level of 0.99: this cost is modulated by the vigor y to capture the
fact that more vigor spent executing actions implies a higher energy cost.
The sum of the two costs gives the total unitary costs TUC. The energy
level E varies on the basis of the energy costs and food ingestion:

TUC = FUC + V UC · yι E[t] = E[t− 1] + ε · F [t]− χ · TUC (7)

where ι is a exponential parameter (set to 5.0) implying that costs grow
more than proportionally when vigor grows; ε is the energy increases due
to the ingestion of one unit of food (set to 0.01), F indicates the units of
food ingested when the reward is delivered (set to 10), χ is the decrease
of energy due to energy costs (set to 0.05). E is always kept in the range
[0, 1]. Moreover, and importantly, at the end of each block of six trials
(corresponding to a day session) E is set to 0.2 to represent the fact that
after each trial the real mice had free access to food and then were kept
without food until the succeeding day session.
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Hunger H depends on the level of energy. The perceived reward R,
which drives the learning processes of the actor-critic model’s components,
depends not only on the ingested food but also on the hunger level that
modulates the appetitive value of food:

H[t] = (1.0− E[t])ϕ R[t] = F [t] ·H[t] (8)

where ϕ is a parameter (set to 3.7) that causes an exponential increase of
hunger in correspondence of lower levels of energy.

Figure 2 shows the mouse’s costs, perceived rewards, and their balance
(difference), all measured per time unit, in correspondence to different levels
of vigor and assuming that the mouse starts to run along the corridor with
a maximum energy level. The unitary perceived reward UR used to plot
the curves was obtained as follows:

UR = (F ·H) / (1.5/ (MS · y)) (9)

where MS is the maximum step size of the mice (set to 1/10 of the corridor
length, that is to 0.15), corresponding to the maximum vigor (y = 1), and
(1.5/ (MS · y)) represents the number of steps needed by the mice to cover
the corridor length (1.5 m) with a vigor y.

Fig. 2. The curves represent the energy costs, the perceived rewards, and the energy
balance in relation to increasing levels of vigor (x-axis).
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Consider that due to the small duration of a trial the energy spent in
terms of TUC is rather low whereas the energy expenditure related to the
time that elapses from one day to the following one, which brings E to
0.2 (see above), is rather high and causes the most important effects on
perceived rewards. In any case, the dynamics of costs (FUC, VUC and
TUC) were included to propose a general model with the potential of tack-
ling many experiments involving hunger. In this respect, it is important
to mention that graphs as the one reported in Figure 2, and an analysis of
costs as the one reported in this Section, resemble those used by economists
to analyse the costs, income and balance of enterprises. Indeed, a recent in-
terdisciplinary research trend in neuroscience aims to exploit the analytical
tools used by economics to investigate phenomena related to the functioning
of brain.26 The analysis reported in this section, for example, allowed us to
conduct a preliminary exploration of some of the parameters of the model
so as to be able to identify interesting regions of them (e.g. this allowed
us to envisage the possible vigor value which could maximise the energy
balance: see the maximum value of the energy-balance curve in Figure 2).

4. Results

The model was implemented in Java programming language and was tested
five times for each of the three reinforcement schedules FR100, FR50 and
RR50. The curves of Figure 3 show the level of vigor selected by the model
in the three conditions during 10,000 trials of learning. The vigor for FR50 is
also plotted for rewarded (FR50+) and non-rewarded (FR50-) trials. These
results are now compared with those of Figures 1a-b concerning real mice.

The first result of the simulation is that, as in real mice, with FR100
the simulated mouse selects a level of vigor higher than with FR50. This is
likely due to the higher overall energizing effect due to the higher amount
of food ingested. More importantly, the model succeeds in reproducing the
behaviour of real mice that exhibit a higher vigor with FR50+ than with
FR50-: as suggested by Parisi, the reward not only effects learning but,
being stored in the model’s memory input units, it can also play the role
of predictor of the outcome of the next trial.

Figure 1b shows that in real mice FR50+ led to a vigor higher than
FR100. As mentioned in Section 2, this result is unexpected as in the two
conditions the reward is the same, namely 10 units of food. The model,
which reproduces this outcome, allows explaining the mechanism behind
it. In the model each group of six trials (corresponding to a “day section”
of the experiments with real mice) starts with a level of energy of 0.2. Even
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if in FR50+ in three trials out of the six of each block the level of energy
increases, on average when food is ingested the level of hunger is higher
than in FR100. As high levels of hunger increase the perceived reward, the
mouse learns to spend more energy to get one unit of food in FR50+ than
in FR100. Notice how this mechanism might have an adaptive value in
ecological conditions as it leads mice to spend more energy when food is
scarcer and the risk of death for starvation is high.

Interestingly, the model also reproduces the behaviour exhibited by real
mice for which in early phases of learning FR50- produces levels of vigor
higher than in the other conditions, in particular FR100 and FR50+. Parisi
explained this noticing that the trials related to FR50- were those taking
place right after a rewarded trial from FR+. The model suggests detailed
mechanisms behind this explanation. According to what stated in the pre-
vious paragraph, FR50- trials follow the receiving of the highest perceived
reward. In FR50, before the mouse learns to predict if a trial will be re-
warded or not the connection weight related to the bias unit will tend to
increase maximally in rewarded FR50+ trials and so to contribute to a
high vigor in the following FR50- trial. In FR100 this effect is lower as the
perceived reward is lower.

Fig. 3. Levels of vigor during learning, lasting 10,000 steps, in the conditions FR100,
RR50, FR50, FR50+ and Fr50-. Each curve is an average of five repetitions of the
simulations.
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5. Conclusion

This paper presented a preliminary study of a model that extends the work
of Niv et al.17 concerning the level of vigor with which animals execute
actions by introducing explicitly the dynamics of hunger and its effects on
perceived rewards. The extension makes it possible to reproduce most of the
results obtained by Parisi19 with real mice experiments. The model explains
various aspects of the behaviours exhibited by real mice in terms of specific
mechanisms, in particular the fact that the vigor of an action can be high
even in the presence of low amounts of food received if high levels of hunger
lead the mice to perceive food as more rewarding.

The model, however, was unable to reproduce the result according to
which real mice trained with RR50 are faster than those trained with FR50
and FR100. As mentioned in Section 2, this particular behaviour is likely
due to other mechanisms not taken into consideration by the model, in par-
ticular the possible energizing effects of random uncertain outcomes. These
energizing effects might have adaptive value as they would lead animals to
further explore the environment to collect more information and decrease
uncertainty. This topic should be addressed in future research.

A second, more important limit of the model, shared with the model of
Niv et al.,17 is that it performs a choice of vigor which is “cognitive”, that
is, it is learned and implemented on the basis of reinforcement learning
mechanisms underlying the selection of actions themselves. On the con-
trary, probably the nervous system of animals contains some mechanism
specifically dedicated to controlling the level of energy invested in actions’
performance. One result suggesting that this might be the case is the fact
that the model learns to regulate the level of vigor very slowly (in about
4,000 trials) while real mice regulate the level of vigor after few trials, of-
ten even before they learn to produce the correct action.17 Also this issue
should be tackled in future work.
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