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Abstract—Children are capable of acquiring a large repertoire
of motor skills and of efficiently adapting them to novel cond-
tions. In previous work [1] we proposed a hierarchical modubr
reinforcement learning model (RANK) that can learn multiple
motor skills in continuous action and state spaces. The motiés
based on a development of the mixture-of-expert model that &s
been suitably developed to work with reinforcement learnim.
In particular, the model uses a high-level gating network fo
assigning responsibilities for acting and for learning to aset of
low-level expert networks. The model was also developed withe
goal of exploiting the Piagetian mechanisms of assimilatitoand
accommodation to support learning of multiple tasks. This @per
proposes a new model (TERL - Transfer expert reinforcement
learning) that substantially improves RANK. The key difference
with respect to the previous model is the decoupling of the
mechanisms that generate the responsibility signals of eepts
for learning and for control. This led made possible to satify
different constraints for functioning and for learning. We test
both the TERL and the RANK models with a two-DOFs dynamic
arm engaged in solving multiple reaching tasks, and comparéhe
two with a simple, flat reinforcing learning model. The resuts
show that both models are capable of exploiting assimilatio and
accommodation processes in order to transfer knowledge bsten
similar tasks, and at the same time to avoid catastrophic irer-
ference. Furthermore, the TERL model is shown to significarly
outperform also the RANK model thanks to its faster and more
stable specialization of experts.

I. INTRODUCTION

functioning and to make its learning more robust [1].

This paper proposes a new model, called TERL (Transfer
Expert Reinforcement Learning), which has one key diffeeen
and various minor improvements with respect to RANK. The
key modification, a departure from the philosophy of ME,
is based on the decoupling of the responsibility signal$ tha
establish the contribution of experts to the generation of
actions with respect to the signals that establish theyeafit
their learning. As we shall see, this modification allowed us
to make the processes of functioning and learning of TERL
significantly more efficient.

The RANK model was also proposed as a tool to investigate
the Piagetian concepts of assimilation and accommodation
[5]. However, in previous work only preliminary evidence
was shown on the fact that the model could actually capture
these processes. Here we present evidence that both RANK
and TERL can indeed exploit such processes to generalise
when learning similar tasks and at the same time avoid
the problem of catastrophic interference [6] when learning
different tasks. In doing so, we will also show how the models
allow us to provide an operational definition of assimilatio
and accommodation .

The rest of the paper is organised as follows. Sec. I-A
reviews previous relevant, while Sec. I-B introduces some
issues related to assimilation and accommodation. Sec. Il

One fascinating and still unexplained aspect regarding gsresents the simulated robot and tasks used to test the snodel

imals, and especially primates, is their capability to aeu Sec. Il presents TERL and highlights its differences with
a large repertoire of skills by autonomously interactinghwi RANK. Sec. IV shows the results of the tests both in terms
the environment. In comparison, artificial agents and nrahiof performance and in terms of the capacity to assimilate and
learning algorithms are often very effective when solviig s accommodate. Finally, Sec. V draws the conclusions.
gle tasks, but are affected by poor generalization capigisili
and catastrophic interference when they face multiplestask A- Related models

Caligiore et al. [1] have proposed a hierarchical modular In the supervised learning literature thmixture of ex-
reinforcement learning algorithm, here called “RANK”, forperts model (ME) has been proposed as a means to avoid
learning multiple tasks. The model (derived from previousatastrophic interference and enhance generalizationT [#g
work, [2], [3]) developed the mixture-of-expert neuralwetk ME has a hierarchical and modular architecture formed by a
model (ME) [4], designed for supervised learning problemaumber ofexpertsmodules, which compete to produce the
so to address reinforcement learning problems. As the Manswer of the system, andgating network which learns to
RANK used a high-level gating neural network to assigassign responsibilities to experts. A key idea of ME is that t
responsibilities to low-level expert networks that solvib@ gating network uses a Bayesian accumulation of evidence on
tasks at hand. Although RANK was shown to be capablke capacity of experts to give a proper answer to the current
of learning different tasks, the results of its tests higitied input. This idea, first adapted to a RL context in [2], [3], is
that further research was needed to better understandaitso at the core of both RANK and TERL.



In the last decade, Hierarchical RL systems (HRL) hawe novel task that requires treame sensorimotor mappings
been proposed as a preferential route to speed up the cond@eommodatiomccurs when the model recruits a copy of the
gence of RL. These systems are used to either perform taskpert developed for solving a given task auitably modifies
decomposition or, as here, to learn multiple tasks. Howeher it for solving another task that requiresnilar sensorimotor
majority of these systems work with discrete states an@actimappings The model also exhibits a third process, here called
spaces and have not been used with continuous actions gederation used to face novel tasks that requiery different
states (e.g., [7]; see [8] for a review). Indeed, few RL medesensorimotor mappingsand for which it is convenient to
have been developed that are capable to cope with continucersruit non-trained novel experts.
actions and states or have been shown to work within robotic
setups (see [9]-[11] for notable examples; see also [12&for
model that shares some features with TERL) Fig. 1 shows the simulated dynamic planar arm and its work

Although very interesting, these systems do not directig faspace with four different “objects” representing possijpels
the problem tackled here, that is the problem of deciding figr reaching. Note that reaching objects A and B requires
storing different skills in the same or different experthist completely different sensorimotor mappings, A-C similapm
type of problem has recently received attention within the RPINgs, and B-D the same mapping: this is important for
Community under the research agenda CaMsfer rein_ Studying the assimilation/accommodation Capabllltleﬂl’[lf
forcement learning TRL). Within this context, the problem models.
consists in identifying possible “source tasks”, amongstho The arm is formed by two links measuring respectively
previously learned, on the basis of which to learn a ne@p ¢m (upper arm) and 35 cm (forearm). The arm has two
“target task” so as to maximise the transfer of knowledge adgtuated DOFs, one for the shoulder joifit)(and one for
decrease the learning time and the steady-state perfoematiége €lbow joint ¢.). The movement ranges were set to [-
A recent important survey of TRL [13] highlights the fact tha30”;+100] for the shoulder and [Q+160°] for the elbow. The
we still lack systems that can solve this problem in prireipl equations describing the dynamics of the arm are as follows:
ways. TERL contributes to face this problem by proposing
mechanism for resources allocation that is based, as in ME, us = (Iy + Io + 2M. LS, cos 0, + M.L>)6,

Il. THE SIMULATED ROBOT AND TASK

on a Bayesian accumulation of evidence regarding which are +(I. + M.L,S. cos 96)9“@ _ MeLSge(ggs
the experts that are most suitable to solve a given task. +6.)0, sin 0. + Bsb, (1)
B. Assimilation and accommodation te = (Ie + MeLsSe cosbe)0s + Lefet

.2 .

Piaget held aconstructivistapproach according to which MeLsSes sinfe + Befe.
knowledge hadorm and content Form is the innate orga- whereu is the actuated torque of a joint and the parameters
nizational structure (schemas) that allows humans to geocé/, L, S, I, and B are respectively the mass, the length,
and categorise knowledge. Content is the representationtiod distance from the centre of mass to joint, the rotational
the world acquired with experience. According to Piagémertia of links, and the coefficient of viscosity (the paetsrs
[5], cognition develops on the basis of two complementaxyere set t0{0.9,0.25,0.11,0.065,0.08} for the shoulder joint
phenomena, assimilation and accommodation. Assimilatiand to {1.1,0.35,0.15,0.1,0.08} for the elbow joint). The
incorporates new environmental information in pre-erigti equations were integrated with a 4-th order Runge-Kutta
schemas without modifying them. Accommodation, insteathethod using a time step of 0.01 s.
modifies pre-existing schemas to fit new information. This A proportional derivative controller (PD) was used to
idea has been operationalised with neural networks capabilgply the torque to each arm joint. A PD produces a torque
of self-changing not only the connection weights (contenproportional to the difference between the desired joimfl@n
but also their architecture (form) [14]. According to areth set by the model and the actual joint angle, and a damping
interpretation of assimilation and accommodation [15raé proportional to the rate of change (time derivative) of thiaf
networks assimilate when they treat new inputs with thesngle:u = K,(0 — 0ges) — Kq - 6. In this formula K, and
existing internal structure (generalisation) whereag/ the- K, are respectively the proportional gains and damping gains
commodate when this internal structure is updated to stqi&, = 25 and K; = 4 for both joints).
new information (learning). The environment is a working plane with four object goals

With respect to the model presented in this paper, the harding a radius equal t® cm. The object define four different
wired and fixed architecture based on critic and actor egpereaching tasks. Each task requires that the arm learns ¢b tou
can be considered as “innate form” whereas the knowledgee of the four objects starting from the position showed in
it acquires through learning is the “content” (i.e. whichlisk Figure 1 (simulations show that once the system has been
for a given task). Hence, the learning processes takingeplacained it is capable of reaching it from any position). The
within the model presented here allows us to assign a noggktem gets a reward of one when the hand touches an object,
meaning to assimilation and accommodati@asimilationcan zero otherwise.
be considered the process through which an expert trairred foNote that the low complexity of the tasks and the set-
solving an already learned task is used, it is for solving up was very important for developing the algorithm and for
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Fig. 1: The planar arm and the four objects A,B,C and D. Dots Fig. 2: The TERL Hierarchical Architecture.

represent the borders of the work space due to the lengtheof th
arm link and the range of joints.

potential, p 4., of output unite is filtered with a soft-max

understanding its functioning in depth. However, preliamn functlon., a.r.]d the res_ultan.t activatigy., represents the expert
responsibility(Bayesianprior):

experiments not reported here indicate that the model ca sc
up to a robotic arm acting in 3D with a 4-DOF redundant arm. o(Pac/T)
JAe = S0 7y
[Il. ARCHITECTURES AND ALGORITHMS ¢ S0 epac/T)
The TERL system (Fig. 2) is formed by two componentgyq 7 temperature parameter, set to 0.1, allows to enhance
anactor that controls actions and_caltlc that evalu_ates States'slight differences between priors and therefore promofasta
Both these components have a hierarchical architectunesfor specialization of the experts

by a gating networkand a number oéxperts as in ME [4]. ]
We now explain the functioning of TERL, then its learning, 3) Actor experts:Each actor expert4E.) has wo output

)

and then its differences with RANK units with sigmoidal activatior..; which encode the control
' signals to the arm (the two desired joint angles). Theseututp
A. Functioning of TERL units receive input from the arm-posture map unitsvia

nnections with weightsvsge;; and a bias weight (input
nstantly set to one). The global actiep (desired arm
angles) of the actor is computed on the basis ofgtiers:

1) Input: The system gets two types of inputs: (a) the gating
networks get as input the current task,gwal, encoded with
a different binary vector for different objects: A=[1,0D,
B=[0,1,0,0], C=[0,0,1,0] and D=[0,0,0,1]; (b) the expegtst
as input the arm postured(t), 6.(t)) encoded in a neural 4= ZgAe e
map (with population coding cf. [16]) formed by 21 x 21 ¢

normalised Gaussian radial basis function units(as in in To foster exploration, the executed actiosf,, includes
[9)). noise, as explained in sec. lI-D. '

The difference in the input l_aetween_the gating _and the4) Critic gating network: The critic gating network (CG)
experts networks reflects what is done in the TRL IlteratuWOrkS analogously to the AG on the basis of the connection

yvhere the _systems is t¥p|cally informed about the task mas_f weights, weew:, the unit activation potentialgic,, and the
ing. The different task in most cases have to be accomplls)}ﬁsors of the critic expertgc
e

in the same environment (as here), and the input (here the . _ ~ i
arm proprioception) sent to the part of the system that have t 5) Critic egperts.Each C”,t'c expert (CE) has a linear OUW
encoding the evaluation of the current state and receives

solve the task (here the experts) does not change (but tf&ere_L(LP't Ve X ) .
other possibilities, see [13]). We cannot expand this isgre, NPut from the arm-posture map units; via connections
but this arrangement seems also to reflect the organization8th Weightswcee;. The global evaluatiow of the critic is
the striato-cortical loops in real brains, the core strreithat COMPUted on the basis of thpiors:
underpin trial-and-error learning in organisms (e.g., [4e8,
v = ZgCe Ve
e

®3)

[18]). (4)

2) Actor gating network:The actor gating network (AG)
has ten output units (indexed witt) which receive the task g | earning signals
input z; via connections with weights 4¢.;. The activation



1) Global TD-error: Couples of successive global evalu- 2) Actor experts learningFiltering the gating outputs with
ations, together with the rewang, are used to compute thethe soft-max favors the quick specialization of the expéiiss
global TD-errory;, as in standard reinforcement learning [19]means that the prior of the best expert will be close to one

and those of other experts will be close to zero. In this case

e — Vi1 if end of trial the Bayes rule returns a posterior close to one for the best
8t =< (re +yve) — w1 if during trial (5) expert and posteriors close to zero for the remaining expert
0 if start of trial Thergfore if postgnors are usgd to mody_late the e?<perts’
learning rates, as in ME (and as in RANK), it is not possible to
where~ is a discount factor = 0.99). create multiple copies of the behavior of the best expeds. T

solve this issue TERL uses a different learning rule. Thé sof
max priorsg 4. are ranked and the ranks are used to calculate
a learning rate modulation parametek,.:

2) Critic Experts TD-error: The expert TD-error signals
are calculated as follows:

Tt — Vet—1 if end of trial N
Oet = { (T¢ + YVer) — Ver—1  if during trial (6) lge =bFe/ Z pke (12)
0 if start of trial e=1

whereb = 6, k. = [0,1,2,3,...,10]. The resultingl4. are
3) Actor experts posterior responsibilitiesTo train the [0.834,0.139, 0.023,0.004,0,0,0,0,0,0]. Note that heeeuse
actor experts and gating network the algorithm computdse same function as in RANK (cf Sec. IlI-E) to keep the two
the adjusted responsibilities (Bayesiposteriors [4]) of the models comparable, but in the case of TERL ranks do not
experts as follows: determine the priors for actions and therefore they do netine
to sum up to one as in RANK. This means that the rank-based
hae = —=——""—— mechanism used for regulating learninglscoupledrom the
> lcac - gacl priors used to act: this gives much flexibility to TERL becaus
; allows the user to establish the number of copies the algorit
" develops and the rate with which those copies are trained.
The TD(Q) learning rule adapted to TERL is:

CAe * JAe (7)

wherec 4. is a measure of thigkelihood that the actor exper
e, chose the global actiom}® ;:

n 2
Cae = 6*0»5(13[3“2*71]) 8) eABejit = (] — aejt) - (aejt - (1 — aeje)) - Tt

WAEejit = WAEejit—1 + NAE - lAe - 0t - €AEejit—1 (13)
whereD [a} ;,a.—1] is the Euclidean distance between the _ )
two vectors encoding respectively the global actitn, and WNerenag is alearning ratery z = 1.2), and(ac;t-(1—aejt))

the actiona.;_;, computed by expert. The width of the is the d_erivativ_e of the sigmoid function. .
Gaussiand) is kept constant at 0.5. 3) Critic gating network learning:Even this rule has been

. . - . developed in analogy with ME: the responsibility of an exper
ofA:%ecéltilt(i:ce;xppeer:tsspaorsetig?rzprﬁtssé)g?bfgﬁfv\s/?e posteriors is increased if the expert likelihood was higher (i.e., @ward
' prediction error was smaller) than average, and decreased
CCe " JCe otherwise (but differently from AG,; is not needed as
m ©)  the likelihood is already informative of the expert’'s outpu
quality). Formally:

hCe =

wherecc. is a measure of thikelihood that the critic expert,
e, produced an accurate evaluation producing a zero TD-error Awcgei =nce - (hoe — goe) - zit—1 (14)

wherence is a learning raterfog = 1).

4) Critic experts learning:As for the actor we rank the
critic priors and obtain the coefficiefyt. to modulate learning
rates. The learning rule becomes:

Cow = o—0-5(3ce)’ (10)

C. Learning

1) Actor gating network learning:The learning of the
AG has been developed in analogy with ME. Intuitively, the
learning rule tends to increase the responsibility of areexip  wherenc is the learning rate (hergog = 0.01). Note that
its likelihood (i.e., the similarity of its action with thexecuted here the expert TD errai; is used to update the critics experts
action) is higher than average and if it has produced a pesitinstead of the global TD erra¥;.
surprise; otherwise it is decreased. Formally:

WCEeit = WCEeit—1 + NCE - lce - Oet - Tit (15)

D. Exploratory behavior

Awagei =146 - 0t - (hae — gae) - Zit—1 (11) One important challenge in RL is the regulation of ex-
. ) ploratory noise. Different solutions have been proposed fo
wheren ¢ is the learning rate (here set to 3.0). discrete action/state stationary environments(e.g., [Z]),



but solutions for continuous action/state environmerngsséitt and environmental noise; moreover, once expert learnisg ha
preliminary (e.g., see [9]). been decoupled from functioning to be fully controllables t
Here we use a noise regulation that exploits the fact thabtivation for using the Bayesian posterior to modulateag (
TRL involves episodic RL problems [13]. In particular, eacin ME) is no more theoretically founded.
trial is divided in two phases: a first exploitation phasethwi
low noise, and a second exploration phase, with high noide. 1he SINGLE model
The exploration phase starts when a close to optimal systenThe performances of TERL and RANK are compared with a
is expected to be able to solve the task, i.e. after 1.5 sec. third baseline RL model (SINGLE) formed by a single expert
Formally, anexploratory modul@roduces stochastic actionsfor both the critic and the actor and no gating networks.
obtained by filtering a uniform random noise:
IV. RESULTS
EM 1 EM 1 H H : H
a;y " t=(1- ;) cany + — e (16) Task A and B require vergifferentsensorimotor mappings
and so allow testing the capacity for generation (see SBg. I-
wherel /7 = 0.01 is the filter time constant ane is a random of the models. Task C is close to A and so allows us to measure
variable uniformly distributed iri—20, +20]. The result of the the accommodatiosapability of the models as in this case the

integration is cut in0; 1]. models can transfer knowledge from A to C. Finally, task D
This stochastic action is then mixed via a COGﬁlClQrWlth is the same as task B, but the gatmg networks are informed
the global actioru; to obtain the executed actiorf;,: that a different task is being solved, so to allow us to test th
assimilation capability of the models.
afy =ci-a;+ (1 —c)-af™Mt (17)  Training was carried out with a simulation lasting 3000I&ria

1jn total and involving two phases. In the first phase, lasting

1000 trials, in each trial the task was switched between Aask

and B. In the second phase, lasting other 2000 trials, all fou
{CO if t<t. tasks were trained.

Ct =

The key point is that; is modulated during two phases o
each trial so as to suitably regulate noise. In particular:

. (18)
Breia if te <t <tr) A. Learning Performance

wheretr (tr = 10 s) is the trial durationf. (t. = 1.5 S) Fig. 3 shows the average performance of TERL, RANK and
is the exploitation time during which; = ¢y (¢ = 0.99), SINGLE over the first and second phase of the simulation.
B (B =0.996) is a decay coefficient progressively decreasingor each trial, the figure reports the reaching time of the
¢ during the exploration phase. The small noise during tmeodels (10s if the object was not touched) averaged over 10
exploitation phasecfy = 0.99) allows the system to slowly replications of the simulations. A first result, which confg
refine the policy even during this phase. Actions rang@;] what found in [1], is that SINGLE does not find a suitable
and desired anglesg}, are mapped onto the joint ranges beforeolution to the problem as catastrophic interference aed th

being sent to the arm. limited amount of computational resources prevent it from
o learning even two tasks.
E. Functioning of the RANK system Regarding the comparison between TERL and RANK for

The main differences of RANK with respect to TERL aretasks A-B, Fig. 3 shows that TERL is much faster then RANK.
(a) Functioning: at each step, RANK ranks the activatiomtroducing new tasks (from trial 1000 on) compromises
potential p4. and pc.) of the gating networks based onperformance only very briefly, indicating that the new tasks
Eqg. 12 and uses the ranksr deciding the responsibilities being similar or equal to previous ones, are solved verydigpi
of experts TERL, instead, uses the soft-max responsibilitiesurthermore, TERL has a better performance also when tasks
to act; (b) Learning: RANK first computes the ranks an@ and D are introduced.
then transforms them into posteriokswith the Bayes rule  Fig 4 shows the performance of TERL and RANK for each
(Egs. 7 and 9) and uses these posteriors to modulate expsirtgle task aligned to the time when the task is introduced (A
learning; TERL, instead, applies the ranking function te thand B from the beginning, C and D from trial 1000). TERL
priors g and uses the ranked priors for learning (therefotearns task A and B approximately 10 times faster than RANK.
responsibility signals commanding actions dezoupledrom  Also for task C and D TERL largely outperform RANK. This
the coefficients regulating experts learning). The medmani higher performance is in part due to the fact that TERL can
() is not efficient as constrains RANK to use experts othérlly exploit the ability of the best expert once discovered
than the best one to act: indeed, the ultimate reason fehile RANK mixes the actions of the best expert with those
introducing ranking in RANK was to regulate learning anof the experts with a non-zero rank-based responsibility.
to obtain copies in background, but there are no good readimportantly, Fig 4 also shows that for task C, similar to
sons for using it also for regulating expert responsiletiti the previously experienced task A, both models are capable
for functioning. The mechanism (b), directly derived fronof transferring knowledge, as they learn the new task much
ME, has the problem that in RL the likelihood with whichfaster than task A itself. A similar result is achieved foska
posteriors are computed are very unstable due to explgratdr, equal to the previously learned task B: also in this case
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Fig. 3: Average performance (y-axis) of TERL, RANK, and SIN&
during the simulation (x-axis). Each curve represents aname over
10 replications of the simulation, and has been smoothel wit
moving average of 30 trials. Performance is averaged owstA Fig. 5: Use of actor experts by TERL during one simulatione Th
and B for the first 1000 trials and over tasks A, B, C, and D fer thfour graphs refer to tasks A, C, B and D. Each graph reports the
last 2000 trials. priors of the 10 experts during trials. For each trial of thraugation

the highest, second highest, and third highest priors aectively
marked with black, dark gray, and light gray, while all othgfors
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| ToATTERL are not marked (white). Recall that learning on tasks C aneédinis
o C=TERL after the 1000th trial, so the priors for them are not showforiee
TIRTERL such trial.
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the other experts that contribute to it; (b) which experts ar
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trials with respect to the main expert, and so become “copies” of
(a) the skill available for future exploitation; (c) which expés
1‘; —ARANK used when a new task is introduced (e.g., the expert most used
ok T eRANK for a previously learned task, a “copy” of it, or a completely
= T T ot fime new expert).
g 2 " Fig. 5 shows the evolution of the prior responsibilities of
£, actor experts of TERL recorded at the end of each trial of a
g s representative simulation. Importantly, Fig. 5 shows thiaén
2 task C (similar to A) is learned, a copy formed during the
é learning of A is recruited as expert with highest prior (extpe
© 80 100 150 2QQ 280 800 350 400 7). Using the definitions proposed in Sec. I-B, this represen
(b) a case ofaccommodationa (copy of a) skill previously used
to accomplish task A is now recruited for the similar task

Fig. 4: (a) Learning curves of TERL in each of the four taslgmadid ] o - )
with the time of their introduction; (b) Same data for RANK. C and suitably and efficiently modified. Notably, catastioph
forgetting is avoided thanks to the fact that for solvingkt&s

the systems does not use the best expert used for task A, but
both models learn very fast the new task as they realize trfyother expert that has learned the same skill.
can exploit previously acquired experts. We now analyze inFig. 5 also shows that when task D (which is identical

detail the processes underlying these results. to task B) is learned, the best expert used for learning B
o _ _ is recruited as the expert with the highest prior (expert 8).
B. Assimilation, accommodation, and generation According to the definitions proposed in Sec. I-B, this repre

To understand how TERL and RANK behave when lear$ents a case afssimilation the skill developed for B is now
ing different, similar, and same tasks, we investigated th@cruited for the identical task D without any modification.
dynamics of the value of the responsibility priors of the Finally, Fig. 5 also shows that the experts with the three
actor and critic gating networks during the simulation. sThihighest priors for tasks A and C, on one side, and those
values establish the responsibility of experts in actionl afor tasks B and D, on the other side, differ: the system has
contribute to the entity of their learning (filtered by thexka “understood” that the tasks are different and so has retuit
in TERL, and multiplied by the likelyhood in RANK). Thus different experts (a case of “generation”, see Sec. I-B).
the priors give a good indication of: (a) which expert has the Fig. 6 shows that similar results are obtained for RANK,
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Fig. 6: Same data as in Fig. 5 but for the RANK model. This article has presented TERL, a model capable of

learning multiple tasks while exploiting their similags and

avoiding catastrophic interference. The model represants

substantial improvement of a previous similar model that
but for a crucial difference: RANK takes a lot of time befor@dapted the key ideas of the mixture of expert network, devel
specializing the second and the third best experts, andlinit oped for supervised learning, for working with reinforcerne
oscillates between several different experts. This umestalearning problems that have continuous states and actions
selection of experts produces unstable learning signats &paces. The key innovation of the new model is the decoupling
hence slows down convergence. This instability is due the fbetween the responsibility signals used to exploit anddim tr
that in RANK ranks are not directly used to train the expertbe experts. This decoupling allows the model to refine the
but are filtered with the likelihood, which is rather unstabl Bayesian mechanism through which TERL collects evidence
Instead, TERL uses ranked priors for regulating learnimgl, aon which expert is best suited to face the current task and to
priors are rather stable as they are based on the Bayedim background copies of skills that can be exploited fow ne
accumulation of evidence collected by the gating networkstasks.

The model has been shown to be able to nicely adapt to the

th Taple II stl_Jmmarﬁe_T_égeLbeh(?\chNoli aél)the }IO l;ei:)hetmogsl ?(I)quests of new encountered tasks. In particular, the msdel
€ simuations wi an - verall, both MoadelS e to: (a) decide that a novel non-trained expert has to be

present four type of behaviors: (a) Assimilation: the et(persed if the new task is substantially different from pregigu

With. the .highe.st prio.r is used for sqlving another task;_(q arned ones, thus preventing catastrophic interfere(ize;
Assimilation with copies: a new task is solved on the baS|58 ploit a copy of the skill already developed for a task if

a copy of the skill developed for an i_dentical task rat.henth He new task is sufficiently similar to the previous one, st th
with its bes_t expert; (c) Accomr_no_datlon. anew task is S(_)!V owledge can be transferred between tasks; (c) exploit the
on the basis of a copy of a similar task, suitably modlfle%;a

(d) Generation: a new task is solved with a completely el me skill used for a previously acquired task also for the
: - task if th imot i ired for the f
expert. The table shows that TERL and RANK have simil eW fask [T the Sensorimotor mapping required for the former

) . . 'MAe the same as those required for the latter.
behaviors in terms of these different processes. Morediver, . _
These processes also lead to an operational definition of

also shows that in some cases task D, identical to B, is soIv%d . RETIN
the concepts of accommodation and assimilation introduced

through a copy, rather than through the best expert, of B: By Piaget. In particular, the model implements assimifatio

the copies have become as good as the best expert, either c},ﬁm . : -
when it uses experts previously used to solve very simdarts
be used for the new task.

tasks, and implements accommodation when it modifies copies

Both TERL and RANK sometimes (once and twice, respeof experts previously used to solve similar tasks so to adapt
tively) sub-optimally use the same expert for the similak&g to the new conditions.
A and C. Furthermore, for the critic experts both models tend These results show that the principles behind TERL have
to use assimilation not only for tasks B and D (identical) bt high potential to allow the construction of autonomous
also for tasks A and C (similar). The reason might be that thebots capable of learning multiple skills while explogin
evaluation gradient of A and C is very similar (roughly, d hiltheir similarities and avoiding catastrophic interferenéit
centered on the target) and that the copies for the two tasks the same time, they can be suitably used to investigate the
similar but not equal (data not shown), so maybe the systepr®cesses underlying development, for example assionlati
use slightly different mixtures to produce slightly diffet and accommodation processes. Although there is not space to
evaluations. Further investigations are needed to exphain expand this issue here, we also think that the mechanisms
behavior. underlying the functioning of TERL are also suitable to



investigate various aspects of brain organization andipigs [21] S. B. Thrun, “Efficient exploration in reinforcementalming,” Tech.
in particular those related to the hierarchical organizatf Rep., 1992.
behavior in cortico-basal ganglia loops [17], [18].
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