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Abstract

The capacity of re-using previously acquired
skills can greatly enhance robots’ learn-
ing speed and behavioral complexity. ‘In-
trinsically Motivated Reinforcement Learn-
ing (IMRL)’ is a framework that exploits
this idea and proposes to build agents ca-
pable of solving several specific tasks by as-
sembling general-purpose building-block be-
haviors (‘skills’) previously acquired on the
basis of ‘intrinsic motivations’. This paper
proposes a novel neural-network hierarchical
reinforcement-learning architecture which ex-
ploits ‘evolutionary robotics (ER)’ techniques
that not only allow tackling important limits
of IMRL, as shown in previous papers, but
they also allow investigating two other im-
portant issues, namely: (1) the optimization
of the parameters that regulate the architec-
ture’s learning processes; (2) the optimization
of the time the architecture dedicates to the
acquisition of the skills’ repertoire. These two
issues are investigated here through a simu-
lated robot engaged in solving compositional
path-following navigation tasks. The results
obtained indicate that the proposed approach
allows obtaining a remarkable improvement
of performance of the architecture, while at
the same time decreasing the time the system
needs to learn the skills, with respect to cases
where hand-tuned parameters are used.

1. Introduction

Current robots are typically directly programmed to
solve just one task at a time in one environment.
This makes them severely limited in that they can-
not cope with any other task nor with other kinds of
environments. Recently, in both the machine learn-

ing and the developmental/epigenetic robotics com-
munities, a number of proposals have been put for-
ward for solving such limitations by relying on au-
tonomous robot development (Kaplan and Oudeyer,
2003; Schmidhuber, 1991; Weng et al., 2001; Huang
and Weng, 2002; Marshall et al., 2004; Oudeyer et al.,
2007). The basic idea behind such proposals is en-
dowing robots with developmental programs which
allow them to learn, through an autonomous interac-
tion with the environment, general-purpose building-
block behaviors which might successively be ‘assem-
bled’ to tackle several specific tasks.

One of the most promising frameworks that has
been proposed to this purpose is ‘Intrinsically Mo-
tivated Reinforcement Learning (IMRL; see Barto
et al., 2003; Stout et al., 2005). IMRL is based on
the idea that natural organisms, especially the most
sophisticated ones like humans and primates, are not
driven only by basic extrinsic motivations directly re-
lated to survival (e.g. for eating, drinking, avoiding
predation and mating), but also by intrinsic moti-
vations which drive them to accomplish exploratory
behaviors directed to acquire skills and knowledge
(White, 1959; Berlyne, 1960). The adaptive value
of these behaviors — and of the motivations behind
them — resides in that they permit the acquisition
of general-purpose skills which can be used, when
needed, for accomplishing a number of different tasks
directly related to survival and reproduction.

Notwithstanding its undeniable appeal, at present
the IMRL framework has two important drawbacks.
First, as they rely on the reinforcement learning
framework of ‘options’ (Sutton and Singh, 1999),
current implementations of IMRL assume high-level
abstract representations of states and actions, and
hence they can be applied only to agents acting in ab-
stract simple grid-world environments. As also rec-
ognized by Barto and coworkers (Stout et al., 2005),
this is a serious limit and it is not clear whether



and how IMRL might be used in robotic scenar-
ios. Second, the ‘salient events’ which initiate and
drive the development of basic skills must be explic-
itly specified by the programmer: this requires the
introduction of a significant amount of assumptions
about the tasks at hand and their possible solutions,
thus considerably reducing both the generality of the
approach (for each problem the appropriate salient
events must be specified) and agents’ autonomy.

Recently, Schembri et al. (2007b) proposed an
architecture, based on a hierarchical actor-critic
reinforcement-learning model (Sutton and Barto,
1998), which overcomes both these limits of IMRL
by integrating it with ‘Evolutionary Robotics (ER)’
framework (Nolfi and Floreano, 1999). The architec-
ture, described in detail in Sec. 2.2, is formed by a
number of ‘experts’, which learn basic skills, and a
‘selector’, which learns to select the expert which is
most appropriate for the current situation (cf. Bal-
dassarre, 2002). In contrast to the IMRL implemen-
tations proposed so far, the use of neural-networks
allows the architecture to be applicable to continu-
ous and noisy environments typical of robotic tasks.
Furthermore, the architecture acquires basic skills on
the basis of evolved ‘reinforcers’, that is neural net-
works that assign a reward value to explored states,
instead of hardwired salient events, thus enhancing
both the generality of the approach and the overall
autonomy of the system. The model is able to ac-
quire general-purpose skills on the basis of intrinsic
evolved motivations during a ‘childhood’ phase, and
to solve several different robotic tasks by combining
such sills during a successive ‘adulthood’ phase.

In a second work, Schembri et al. (2007a) com-
pared the performance of the architecture with other
systems in which various components of the archi-
tecture are either trained during lifetime or evolved
through a genetic algorithm. The results were quite
encouraging: the versions of the architecture us-
ing both evolution and learning significantly outper-
formed the versions using either one of the two. Fur-
thermore, among the systems using both evolution
and learning, the one evolving internal reinforcers
driving the acquisition of building-block skills had a
higher evolvability than those directly evolving the
related behaviors.

The present work tries to push the idea of exploit-
ing ER techniques for optimizing the learning capa-
bilities of an intrinsically motivated robot even fur-
ther. Any reinforcement learning architecture has
a number of parameters that regulate its learning
processes. Typically, the values of these parame-
ters are decided by the programmer according to in-
tuitive heuristics and non-systematic trial-and-error
optimization processes. The use of ER opens up the
possibility of using a genetic algorithm for finding
optimal sets of the parameters regulating reinforce-

ment learning processes (to the best of the authors’
knowledge, the only work that exploited this idea is
Eriksson et al., 2003).

Furthermore, as the architecture studied here as-
sumes that the robot’s life is divided in a child-
hood and an adulthood phase, there is another
fundamental parameter which in the previous two
works (Schembri et al., 2007a,b) was set by trial-and-
error processes and hence which could be optimized
through the genetic algorithm: the length of child-
hood, that is the number of steps during which the
robot trains its experts on the basis of intrinsic mo-
tivations. Both for robots and for real organisms,
there is clearly a trade-off between short and long
childhood phases. If childhood is too short, an agent
cannot learn enough, and all of its basic abilities can
only be genetically inherited. On the other hand,
childhood has clear costs: for an organism, it is time
during which the organism is not autonomous and
must be fed and protected by its parents; for a robot,
it is time which is not spent for solving the tasks the
robot has been designed for. In order to test whether
our system could be further optimized, in this paper
we use the genetic algorithm not only to evolve the
reinforcers driving the acquisition of basic skills, but
also the length of childhood and the learning param-
eters of the reinforcement learning algorithm.

The rest of the paper is organized as follows. Sec.
2.1 describes the robotic setup and the simulated ex-
periment used to test the model. Sec. 2.2 contains a
detailed description of the model. Sec. 2.3 describes
the used genetic algorithm. Sec. 3. reports the main
results. Finally, Sec. 4. concludes the paper.

2. The setup

2.1 The simulated environment and robot

The simulated robot is a ‘wheelchair’ mobile robot
with a 30 cm diameter equipped with a camera as-
sumed to look at a portion of the ground measuring
24 x 8cm located just in front of the robot. In each
cycle the robot’s input is furnished by a vector x of
12 x 3 = 36 binary values that corresponds to the
activation of the RGB receptors sampling the cam-
era’s image on the vertex of a 6 x 2 regular grid (see
Fig. 2). The robot’s motor system is driven by set-
ting the orientation variation within [—30, +30] deg,
and the translation speed within [0, 2] em.

The environment is a square walled arena with a
regularly textured floor (Fig. 1). The robot’s life
is divided into two phases: ‘childhood’ and ‘adult-
hood’. During childhood the robot learns a set of
basic sensorimotor skills based on its intrinsic moti-
vational system. Childhood’s length is particularly
important in this work as in some experiments its
length was evolved and how this affected the param-
eters was studied (see Sec. 2.3). During adulthood,



The walled arena and adulthood tasks.
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Figure 1:

ground (dark gray: blue; gray: red; light gray: green;
white: black). Arrows represent the six adulthood dif-
ferent tasks: each arrow’s tail and head indicate, respec-
tively, the starting and the target position of a task.

the robot learns to combine the acquired skills in or-
der to accomplish six different tasks. In each of these
tasks the robot has to reach a given target location
(having a 26cm diameter) starting from a particular
initial position (Fig. 1). During each task, every time
the robot reaches the target it receives a reward and
is set back to the initial position.

2.2 The model

The controller of the robot is a hierarchical modular
neural network (Fig. 2) formed by a selector and a
number of experts. The selector and each expert are
formed by a neural-network implementation of the
actor-critic model (Sutton and Barto, 1998). This
model is composed of two neural components, an
‘actor’ and a ‘critic’, and it is capable of learning to
select appropriate actions in order to maximize the
sum of the future discounted rewards (‘discounted’
means that the same reward is given less importance
if received later in time, see below). The actor learns
to associate suitable actions with the perceived states
of the environment on the basis of the critic’s evalu-
ation. The critic learns to associate evaluations with
single visited states on the basis of the rewards ex-
perienced after these visits, and produces a one-step
judgment of the actor’s actions on the basis of the
evaluations of couples of states visited in sequence.

The experts are now described in detail. Each ex-
pert e is formed by three components: a ‘reinforcer’,
an ‘actor’ and a ‘critic’ . The reinforcer is a 2-layer
neural network that with its 1 x 36 vector of weights
w, maps the retina activation x¢ at time t to the
activation of a sigmoid unit that ranges in [—1, +1]

and encodes the expert’s reward r.; (note that in the
paper the symbols at the exponent do not represent
indexes but qualify the main symbol):

Tet =20 [wixg] — 1 (1)

where o].] is the standard sigmoid function. Note
that w are evolved, as illustrated in Sec. 2.3.

An expert’s actor is a 2-layer neural network that
with its 2 x 36 matrix of weights w¢ maps the retina
activation to two sigmoid units m.:

m.; = o [WgX¢] (2)

In order to obtain the performed actions (cf. Man-
nella and Baldassarre, 2007), the activation of the
two units is added a Gaussian noise to obtain two
values a; ranging within [0, 4+1] (noise values are re-
drawn until the values respect this range):

Qe = Mgt + € [01 p] (3)

where € [0, p] is a Gaussian noise with zero mean and
standard deviation p initially set to 0.3 and linearly
reduced to zero during childhood. The values ag;
are then mapped onto the orientation-variation and
translation commands issued to the motor system.

The weights of the actor are updated using the
following formula:

Awg =n" - sep - (Ber—1 — Meg—1) -
o [Wix¢ 1] X1 (4)
where n%¢ is the learning rate of the experts’ actors,

Set 18 the expert’s critic surprise (see below) and o'[.]
is the derivative of the sigmoid function. The effect
of this learning rule is to lead the means m.;_1 of
actions toward their noisy values a1 if set > 0
and away from them if sy < 0.

Note that the experts’ actor and critic are trained
only during childhood, while in adulthood the ex-
perts skills are fixed and are recombined by the se-
lector in order to achieve ‘externally’ rewarded goals.

The experts’ critic is mainly formed by an ‘eval-
uator’ which is a 2-layer neural network that with
its 1 x 36 vector of weights w maps the retina acti-
vation to a linear output unit encoding the expert’s
evaluation v.; of the perceived state:

Vet = WoXy (5)

The critic uses the evaluator’s evaluations, to-
gether with the reward provided by the expert’s rein-
forcer, to compute the expert’s surprise sq; as follows:

Set = (Tet + 7% - Vet) — Vet—1 (6)

where v¢ is the experts’ discount coeflicient used to
weight the future rewards.
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Figure 2: Center: the whole architecture. Left: the selector’s architecture. Right: one expert’s architecture.

The weights of the evaluator are updated, on the
basis of the surprise signal, using a Temporal Differ-
ence (TD) learning rule (Sutton and Barto, 1998):

AW, =0 - Sep - Xe1 (7)

where 1€ is the learning rate of the experts’ evalua-
tors.

The selector is now described in detail. The se-
lector is formed by two components, the ‘actor’ and
the ‘critic’. At each time the actor selects the expert
that has the control and trains its actor and evalu-
ator (only during childhood). The actor is a 2-layer
neural network that with its 3 x 36 matrix of weights
w® maps the retina activation to three (as many as
the number of experts) sigmoid output units m:

m; = o [W'xy] (8)

These activations are used as pseudo-probabilities
to compute the probabilities p; used to randomly
select the expert that takes control:

p: = my/ (UTmt) 9)

where u is a 3-element unit vector.

The weights of the actor, in particular only those
related to the ‘winning’ (selected) expert, denoted
with the 1 x 36 vector w®, are updated as follows:

Aw*™ =0 . 580’ [Wx4_1] - X1 (10)

where n*° is the learning rate of the selector’s actor

and s; is the surprise of the selector’s critic (see be-
low). The effect of this learning rule is an increase of
the selected expert’s mq_1 if s; > 0 and a decrease
of it if s; < 0.

The selector’s critic is mainly formed by an ‘eval-
uator’ which is a 2-layer neural network that with its

1 x 36 vector of weights w” maps the retina activa-
tion to a linear output unit encoding the selector’s
evaluation v; of the perceived state:

v = W'Xy (11)

The critic uses the evaluator’s evaluations, to-
gether with the reward r; (given its importance, r; is
discussed in detail below), to compute the selector’s
surprise s; as follows:

st =(re +9° - v) —vpq (12)

where 7? is the selector’s discount coefficient.

The weights of the evaluator are updated, on the
basis of the surprise signal, using a TD learning rule
(Sutton and Barto, 1998):

Aw’ =¥ 5 x4 1 (13)

where n"¢ is the selector evaluator’s learning rate.

The reinforcement signal r; used by the selector is
very important for the topic of intrinsic motivations,
and is computed in different ways during childhood
and adulthood. During childhood 7; = s, that is
the reward is equal to the surprise of the selected
expert. This implies that the selector uses an intrin-
sic reward not directly related to the achievement
of specific pragmatic goals but to the acquisition of
knowledge and skills, that is to epistemic goals. In-
deed, as the surprise of an actor-critic model is a
good indicator of its learning progress, it can be used
to train the selector to give control to the expert
which is expected to learn at the maximum rate in
a certain state (this might be an important insight
that will be further investigated in the future). Dur-
ing adulthood 7; is set to 1 when the robot achieves
the target location of the task and to 0 otherwise.
This implies that this is a standard goal-related ez-
trinsic reward.



2.8 The genetic algorithm

The genetic algorithm uses a population of 50 indi-
viduals, each encoding the connection weights of the
three experts’ reinforcers as real variables (the initial
values are randomly drawn in [—1.0,+1.0]). In a first
condition of the experiment, the parameters are set
as indicated in the last column of Tab. 1 (¢l denotes
the childhood’s length). This parameters have been
‘manually optimized’ by running some pilot experi-
ments, and were also used in Schembri et al. (2007a)
to compare the version of the architecture presented
here with other versions of the architecture in which
some other system’s components were evolved to-
gether with the reinforcers. In a second condition
of the experiment such parameters are evolved as
values ranging in [0,1] (¢! was then mapped onto
600,000). For each of these two conditions the ex-
periment is run 20 times with different seeds of the
random number generator and each time evolution
lasts 100 generations. In a third condition the same
parameters of the second conditions are evolved with
the exception of ¢l that is set at 14 different fixed
values, namely 100 - 2°,i = 0,1,2,...,13. For each
of these values, five runs of 100 generations each are
run using different ‘seeds’. The adulthood’s length
al is set to 600,000 in all three conditions.

The fitness f is computed as the number of times
that the robot reaches the target divided by the the-
oretical maximum achievable if the robot follows the
straight lines indicated in Fig. 1 at maximum speed.
In the second condition a cost linearly related to the
childhood’s length is introduced to have a ‘penalized’
fitness pf and induce the algorithm to optimize cl:

pf =[f—(c/al) (14)

At the end of each generation the best 10 individu-
als are selected and each generates 5 offspring. Each
weight of the five offspring of each parent (with the
exception of the first one to have ‘elitism’) is mutated
with a probability of 10% by adding to it a random
value uniformly drawn in [—1.0,+1.0]. In the second
and third condition also the aforementioned evolved
parameters are mutated, with a probability of 10%,
by substituting to them a random value uniformly
drawn in [0, +1.0].

3. Results

Fig. 3 reports the fitness along the generations of
the evolution of the best individual in each gener-
ation and the average fitness of whole population,
for both the first and second condition of the exper-
iment. The figure shows that the best individuals of
the condition with evolved parameters reach a level
(about 0.78) that is remarkably higher (40%) than
the level of the condition with hand-tuned param-
eters (about 0.55). On the other side the average

fitness of such condition is only slightly higher than
the other condition. The reason of this is that the
mutations of the parameters can easily have catas-
trophic effects. Since the mutation of each of the
seven parameters is 10%, and so the chances that
an individual is mutated is quite high, this have a
strong effect on the average fitness. Another inter-
esting fact emerging from these simulations is that,
as indicated in Schembri et al. (2007a), they confirm
that the architecture has a high evolvability when
the parameters are set to fixed values (notice how in
this condition the ‘best’ and ‘average’ fitness increase
in few generations). On the contrary, evolution is
rather slower when the parameters are evolved, indi-
cating that the search in their space is not easy.

Fig. 4 shows three examples of the behavior of the
robot during adulthood. In general the robot solves
each navigation task by composing the basic skills
learned in childhood. Sometimes evolution produces
a set of reinforcers which lead experts to specialize
in following a specific color trail (as in fig. 4a). More
frequently the set of emerged basic skills is not as in-
tuitive as expected and the resulting compositional
strategy is difficult to interpret (fig. 4b). In some
other cases a single expert is able to accomplish the
whole navigation task (fig. 4c). An extensive behav-
ior analysis is currently being carried out to clarify
and quantify these aspects.
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Figure 3: Fitness curves (y-axis) related to the best indi-
viduals (bold lines) and the average of populations (thin
lines) during evolution’s generations (x-axis) of the sim-
ulations run with evolved parameters (dashed lines) and
hand-tuned parameters (continuous lines). Each curve is
the average of 20 different simulation runs. Note that the
fitness’ measures of the condition with evolved parame-
ters are related to f and not pf to ease comparisons.

The parameters evolved are indicated in Tab. 1.
The most important fact is that life is sensibly
shorter (34,993 cycles) than the value that was man-
ually optimized (150,000 cycles). The reason is likely
that the combination of parameter found by the ge-
netic algorithm are particularly well suited to allow
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Figure 4: Examples of strategies emerged in evolution.
Small symbols indicate which expert is selected in a par-
ticular time step (sampled every five simulation steps).
(a) Example of a compositional strategy in which each
expert is specialized in following a single color trail. (b)
Compositional strategy based on less-clearly specialized
experts. (c) Strategy based on one expert specialized in
avoiding one color trail.

a fast learning.

Passing to analyze the differences between the
evolved and the hand-tuned parameters, the most
interesting result is the imbalance between the learn-
ing rates of the actor and the critic of both the se-
lector and the experts. These were manually set
at the same values whereas the genetic algorithm
found quite different values, namely values from ten
to twenty times lower for the critic than for the ac-
tor. The reason of this unexpected outcome is prob-
ably the fact that the evaluators’ neural networks
have linear output units whereas the actors’ neural
networks have sigmoidal output units. Since this im-
plies that the derivative of the output units’ used in
the learning rules (cf. Eq. 4 and Eq. 10) is respec-
tively equal to 1 or ranges within [0, 0.25], the genetic
algorithm found suitable learning rates to compen-
sate this difference. This result is quite general as
in neural-network implementations of actor-critic re-
inforcement learning system it is quite common to
use neural networks with linear units to implement
evaluators and neural networks with non-linear units
to implement actors (included the popular ‘soft-max
function’, see Sutton and Barto, 1998).

Another interesting fact is that the v of the se-
lector is higher (implying a lower discount of future
events) than that of the experts. This reflects the in-
tuition we had when we manually tuned the param-
eters for which the assemblage of experts takes place
at a bigger spatial and temporal granularity with re-
spect to the assemblage of primitive actions com-
posing the experts’ behaviors. However, also in this
case the genetic algorithm found different (lower)
and probably more effective levels of the parameters
with respect to those we found by trial-and-error.

The length of childhood is particularly important
as it constraints the possibilities of the system to

Table 1: The mean and standard deviation of evolved
parameters, and the hand-tuned parameters.

Parameter Mean Std Hand-tuned
cl 34,993 | 13,708 150,000
~7 0.9522 | 0.0630 0.99
ne? 0.7016 | 0.1811 0.05
nv?° 0.0351 | 0.0156 0.05
¢ 0.6184 | 0.1945 0.90
nee 0.6214 | 0.1827 0.01
nv° 0.0402 | 0.0296 0.01

acquire accurate building-block behaviors. Given a
particular setup and typology of tasks as those con-
sidered here, it is useful to have a technique that
allows drawing a quantitative picture of the relation
existing between such length and accuracy of skills.
In the third condition of the experiment the archi-
tecture’s parameters were evolved while systemati-
cally setting the childhood’s length to fixed values.
Fig. 5, which reports the values of the fitness ob-
tained at fixed childhood lengths, indicates that be-
yond a childhood’s length of about 6,400 the sys-
tem reaches a rather high level of fitness indicat-
ing that this is a minimal childhood’s length beyond
which the system succeed to develop a repertoire of
quite reliable skills thanks to the evolved parame-
ters (note that this implies that the system takes
only about 1,050 cycles, on average, to train each of
the six experts). The figure also shows that the sys-
tem achieves a steady-state fitness with a childhood’s
length ranging between 25,600 and 51,200. This is
a notable result as the optimized childhood’s length
emerged in the second condition of the experiment is
equal to 34,993 (see Tab. 1).
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Figure 5: The fitness (y-axis) with different childhood
lengths (x-axis). Each value of fitness is an average of 5
different simulation runs.

These results raise an interesting question: do the
parameters vary with increasing childhood’s lengths?
Fig. 6 and Tab. 2 answer this question by reporting
the values of parameters that the genetic algorithm
found with different childhood lengths. Limiting the
analysis to the values of childhood’s length that pro-



duced a high fitness (i.e. > 6,400), the results indi-
cate that a longer childhood tends to be associated
with lower learning rates of the experts’ actors and
evaluators and the selector’s evaluator. The reason
of these correlations is likely that when childhood is
longer the genetic algorithm can set lower learning
rates as this eventually yields more accurate behav-
iors. A longer childhood tends also to be associated
with a lower experts’ discount factor, but the reason
of this is not clear.
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Figure 6: The evolved parameters (y-axis: this ranges in
[0,1]) with different childhood’s lengths (x-axis). Each
value of fitness is an average of 5 different simulation
runs.

Table 2: Analysis of the linear correlation existing be-
tween the childhood’s length (varing from 6,400 cycles
to 819,200) and the evolved parameters. r: correlation
coefficient; 72: determination coefficient of linear regres-
sion; t: t-Student value on statistical significance of r; p:
statistical significance.
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0.012 | 0.110 | -0.193 | -0.413 | -0.669 | -0.194
0.000 | 0.012 | 0.037 0.170 0.448 0.034
0.075 | 0.684 | -1.213 | -2.792 | -5.551 | -1.222
0.940 | 0.637 | 0.232 0.008 0.000 0.229
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4. Conclusions

This paper presented a neural-network two-level
hierarchical reinforcement-learning architecture for
Intrinsically Motivated Reinforcement Learning
(IMRL) that exploits Evolutionary Robotic (ER)
techniques to evolve various parameters of the learn-
ing algorithm. Two previous works (Schembri et al.,
2007a,b) showed that ER and the use of neural net-

works allow the architecture to tackle two important
limits of the models proposed so far within the Intrin-
sically Motivated Reinforcement Learning (IMRL)
framework, namely (a) their applicability limited to
problems with discrete abstract representations of
states and actions, and (b) their need to be fur-
nished ‘salient events’ by the programmer in order to
be capable of learning the repertoire of skills. This
work extended this research in two novel directions
by further exploiting the ER framework, in particu-
lar it used a genetic algorithm to both optimize the
learning parameters of the architecture and to opti-
mize the time it spent in learning building-block be-
haviors. The viability of the proposed solutions was
proved by using the architecture as the controller of
a simulated robot engaged in solving different nav-
igation path-finding tasks. In this respect, a future
real robot implementation of the architecture does
not seem to be particularly problematic at first sight
as the use of reactive neural networks should help to
tackle the usual problems of noise affecting robotics
setups (e.g. the variability of the camera’s luminos-
ity). One notable exception would be the technical
problem of having to set the robot back to the start-
ing positions at each trial of the adulthood learning.

The results presented in the paper showed that the
use of the genetic algorithm to evolve the learning
parameters can lead to a notable increase of perfor-
mance, about 40% here, with respect to the cases in
which the parameters are tuned by hand. Remark-
ably, this increase in performance was obtained here
while contemporary decreasing, through evolution,
of about 75% the time that the system dedicates to
learn the basic skills.

With respect to the evolution of the (costly) time
spent by the system in acquiring the repertoire of
skills (childhood’s length), the study indicates a tech-
nique that can be used to identify: (a) the minimum
amount of such time beyond which the system is ca-
pable of developing a repertoire of skills with a satis-
fying accuracy (say about 75% of the maximum one);
(b) the time beyond which it achieves the maximum
possible accuracy. The results of these experiments
also showed that, if one considers childhood’s lengths
beyond which fitness is stable, lower learning rates
tend to be associated with a longer childhood.

To the authors’ knowledge, this is the first re-
search where childhood’s length is evolved and its
effects on learning are studied in a systematic fash-
ion. This type of simulations might also be used, in
future work, to investigate the emergence of child-
hood’s length that real organisms invest in playing
and in the acquisition of skills while relying on par-
ents for protection and food.

Overall these results confirm that IMRL architec-
tures can greatly benefit if developed within an ER
framework. In fact ER allows evolving aspects of



the architectures, such as the learning parameters,
that might be very hard to be tuned by hand as they
produce highly non-linear and unpredictable effects.
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