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Abstract. Studying the role played by evolution and learning in adaptive be-
havior is a very important topic in artificial life research. This paper investi-
gates the interplay between learning and evolution when agents have to solve 
several different tasks, as it is the case for real organisms but typically not for 
artificial agents. Recently, an important thread of research in machine learning 
and developmental robotics has begun to investigate how agents can solve dif-
ferent tasks by composing general skills acquired on the basis of internal moti-
vations. This work presents a hierarchical, neural-network, actor-critic architec-
ture designed for implementing this kind of intrinsically motivated reinforce-
ment learning in real robots. We compare the results of several experiments in 
which the various components of the architecture are either trained during life-
time or evolved through a genetic algorithm. The most important results show 
that systems using both evolution and learning outperform systems using either 
one of the two, and that, among the former, systems evolving internal rein-
forcers for learning building-block skills have a higher evolvability than those 
directly evolving the related behaviors. 

1 Introduction1

One important area of investigation of Artificial Life concerns the relationships exist-
ing between evolution and learning, the two key mechanisms that generate adaptive 
behavior in real organisms [1]. The synthetic approach of Artificial Life is an invalu-
able tool for investigating such a topic given the difficulties of collecting relevant 
empirical evidence related to it [2]. This approach already highlighted several impor-
tant aspects of the relationship (for a review, see [3]), for example the fact that learn-
ing can guide evolutionary search [4] and that evolution can discover good starting 
conditions which can in turn facilitate learning processes during lifetime [5]. 

One of the most important distinctions between the two adaptive mechanisms is 
the time scale within which they operate [1]. In this respect, evolution has the advan-
tage of producing various aspects of behavior ‘readily available’ at birth, but with the 
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cost that it can ‘track’ environmental changes only if they take place at a time scale 
longer than the individuals’ life length. On the contrary, learning has the cost of caus-
ing inefficient behavior during the first phases of life but it allows tracking environ-
mental changes within an individual’s life span. Because of these time-scale differ-
ences, the models proposed so far, which typically used neural networks as agents’ 
control systems, assigned to evolution the role of developing the ‘general aspects’ of 
learning systems, for example their overall architecture [6], the learning rules [7][8], 
the parameters regulating learning [9], and the initial connection weights [2][5], 
whereas they assigned to learning processes the role of updating connection weights 
during individuals’ life. In this respect, a relevant novelty of this paper is that it pro-
poses a reinforcement-learning system in which evolution develops some components 
of the system while learning uses these innate components to guide the training of the 
other components. The only work which carried out a study related to this issue is the 
pioneering work of Ackley and Littman [2]. In this work, the authors had a genetic 
algorithm evolving both an actor and an evaluator network, where the former was 
also trained during individual lifetime through a reinforcement learning algorithm on 
the basis of the evaluations of the latter. However, the main focus of that work was on 
the Baldwin effect. In contrast, the present work proposes a new hierarchical neural 
network architecture which learns to solve several different tasks by combining gen-
eral skills acquired during an ‘infancy’ period. Hence, the most important novelty of 
the present work consists in studying the relationship between evolution and learning 
in the case in which learning has a twofold nature, and takes place on the basis of 
both external and internal rewards. This second point is directly related to a recent 
trend of research in the study of learning in artificial systems. 

This new trend of research is inspired by the acknowledgement that when faced 
with new problems, organisms do not need to create solutions from scratch on the 
basis of low-level sensorimotor primitives but they can focus on composing and 
modifying previously developed general skills. Consequently, researchers in both 
machine learning [10][11] and developmental robotics [12][13][14] started to investi-
gate systems with a twofold learning process. These systems acquire general skills on 
the basis of internal motivations (such as the drives to be exposed to 
novel/surprising/salient events), and then use these skills as building blocks to assem-
ble more complex behaviors on the basis of ‘external’ rewards (e.g. pleasure for 
eating and reproducing). This twofold process seems to play a fundamental role in the 
flexibility of behaviors exhibited by real organisms, especially the most sophisticated 
ones, like humans and primates in general [15][16]. Of course, understanding these 
processes is not only scientifically relevant but it is also one of the most important 
current goals of developmental robotics and machine learning, as it would allow 
building artificial intelligence systems having a flexibility and autonomy comparable 
to those of real organisms. 

One of the most interesting machine learning proposals that encompass this in-
sights, and that inspired the present work, is Intrinsically Motivated Reinforcement 
Learning (IMRL) [11][17]. The architecture used in IMRL is based on machine learn-
ing theory of ‘options’ [18]. Basically, options are sub-routines which can be invoked 
as any other primitive action, and include a set of initiation states where the option 
can be invoked, a termination condition, a policy mapping states to actions’ probabili-



ties and, within the IMRL framework, an option model which maps initiation states to 
the probabilities of terminating the option in any other state. New options are created 
each time the system experiences a novel ‘salient event’. A key point is that the sys-
tem uses the prediction error of the option model as an internal reward to decide 
which option to invoke: the effect is that until the ability to produce the associated 
‘salient event’ is not refined, an option continues to generate internal rewards and 
hence to be selected and trained (for a more detailed account of IMRL, see [17]). 

The present paper (see also [19]) proposes a two-level hierarchical reinforcement-
learning actor-critic architecture that represents a first attempt to solve two important 
drawbacks of the current implementation of the IMRL architecture: (a) the assump-
tion of abstract representations of states and actions (e.g. grid-world environments 
and discrete actions), and (b) the fact that ‘salient events’ guiding options’ formation 
and training must be hardwired by the programmer. The architecture tackles the prob-
lem (a) by using neural networks as components of the learning system which con-
trols the behavior of a simulated robot, and tackles problem (b) by using a genetic 
algorithm to evolve neural ‘reinforcers’ that allow the system to autonomously asso-
ciate a level of saliency to experienced states (see [14] for another solution to the 
same problems). 

Using this hierarchical architecture, this research investigates the possible roles 
that evolution and learning can play when learning processes have the aforemen-
tioned twofold nature. In particular, it compares the performance (in terms of evolva-
bility, learning speed, and maximal performance) of different versions of the system 
in which its two main components are either evolved or trained during life: the ‘ex-
perts’, which form the lower-level of the system’s hierarchical architecture, and the 
‘selector’, which forms its higher-level. The next section describes the proposed ar-
chitecture, the task, the simulated robot, and the experimental conditions of the tests. 
Section 3 reports the results, while section 4 discusses the results and the limits of the 
present work and, on the basis of these, some possible directions for future research. 

2 Simulated Robot, Task and Neural Network Architecture 

The simulated robot is a mobile ‘wheelchair’ robot with a 30 cm diameter and a cam-
era pointed towards a portion of the ground located just in front of the robot (24×8 
cm). The robot perceives the ground using a grid of 6×2 sampling points associated 
with color-specific RGB receptors (so the system’s input is a ‘retina’ formed by a 
12×3 = 36 binary values). The robot’s motor system is driven by setting the orienta-
tion variation within [-30, +30] degrees and the translation speed within [0, 2] cm. 
The environment is a square arena with a regularly textured floor (Fig. 1). Four dif-
ferent experimental conditions differing with respect to which parts of the system 
were evolved or trained were studied. We first illustrate the most complex experimen-
tal condition and then we explain the other conditions as variations to the former. 



 
Fig. 1. The environment and the six ‘adulthood’ tasks. The sides of the hexagons are colored 
with blue (dark gray), red (gray) and green (light gray). Arrows represent the different tasks: 
each arrow’s tail and head indicate, respectively, the starting and the target position of a task. 

The robot’s life is divided into two phases: ‘childhood’ and ‘adulthood’. During 
childhood, the robot learns a set of basic sensorimotor skills based on intrinsic moti-
vations. During adulthood, the robot learns to combine the acquired skills in order to 
accomplish six rewarded tasks (Fig. 1): in each task the robot has to reach a given 
target location starting from a particular position, and every time it reaches the target 
it receives one unit of reward and is set back to the starting position. 

The controller of the robot (Fig. 2) is a hierarchical modular neural network 
formed by a ‘selector’ and three ‘experts’ (the quality of results did not change in 
tests with a higher number of experts). The selector and each experts are neural net-
work implementations of the actor-critic reinforcement-learning model [21], which is 
known to have a high biological plausibility [20][22][23][24]. Each expert is formed 
by three components: (a) a reinforcer: a perceptron mapping the retinal input to a [-1, 
1] sigmoid unit encoding the internal reward for that expert (reinforcers are evolved, 
see below); (b) an actor: a perceptron mapping the retinal input to two sigmoid units; 
the activation of these units sets the centre of a Gaussian function which is used to 
generate noisy commands issued to the motor system: the first unit sets the orientation 
variation of the robot, the second unit sets its translation (initial standard deviation = 
0.3; noise is linearly reduced to zero during childhood); (c) critic: this is based on an 
evaluator, a perceptron that maps retinal input to one linear output unit encoding the 
expert’s evaluations of states; these evaluations, together with the reward produced 
by the expert’s reinforcer, are used to compute the surprise of the expert’s critic in a 
standard way [21]. The selector is formed by two components: (a) selector’s actor: a 
perceptron that maps the retinal input to three sigmoid output units; at each time step, 
the activations of these units, each corresponding to an expert, are used as pseudo-
probabilities to select the expert that takes control of the motor system and (during 
childhood) learns; (b) selector’s critic: analogous to the experts’ critics, it uses as its 
reward signal either external rewards or the surprise of the expert which currently has 
the control (see below). 



During childhood, at each time step the selector selects the expert that has the con-
trol. The selected expert: (a) selects and execute an action; (b) trains its evaluator as 
in standard function-approximation actor-critic models [21], but on the basis of the 
internal rewards delivered by its own reinforcer (discount factor = 0.99); (c) trains the 
actor as in [24]: if surprise is positive, the output units’ activations are ‘moved’ (with 
a delta rule) towards the (Gaussian noisy) values corresponding to the executed ac-
tion, whereas if surprise is negative the output units’ activations are moved in the 
opposite direction (learning rate of evaluator and actor = 0.01). On the other hand, in 
order to train its own actor and evaluator, the selector uses the surprise of the selected 
expert as its (internal) reward signal. As the surprise of an actor-critic system is a 
good indicator of its learning progress, during this phase the selector learns to give 
the control to the expert which is learning at the maximum rate. Note that as surprise 
needs two succeeding evaluations to be computed, learning occurs only when the 
same expert is selected for at least two contiguous time steps. 

During adulthood experts are not trained, whereas the selector is trained as in 
childhood, but this time not on the basis of expert’s surprises, but rather on the basis 
of the task-related extrinsic rewards. During adulthood the selector’s weights are 
reset before tackling each task in order to avoid interference between different tasks. 

The genetic algorithm uses a population of 50 individuals, encoding connection 
weights as real variables (with initial random values in [-1.0, +1.0]), evolved for 100 
generations. The duration of childhood is 150,000 time steps, while the duration of 
adulthood is 600,000. The fitness is computed as the number of times that the robot 
reaches the target divided by the theoretical maximum achievable if the robot fol-
lowed the straight lines indicated in Fig. 1 at maximum speed. At the end of each 
generation the best 10 individuals are selected and generate 5 offspring each. Each 
weight of the offspring is mutated with a probability of 10% by adding to it a random 
value uniformly drawn in [-1.0, +1.0]. 

 

Fig. 2. Center: the whole architecture. Left: the selector’s architecture. Right: one expert’s 
architecture (see text for details) 



Four different experiments were run with the following conditions: 
1. Learning Experts, Learning Selector (LE-LS). This is the condition just de-

scribed, in which individuals’ genome encodes only the connection weights of 
the three experts’ reinforcers. 

2. Evolved Experts, Learning Selector (EE-LS). In this condition experts’ actors 
are encoded in the genome and evolved (hence there is no childhood), while 
the selector is trained during adulthood as described above. 

3. Evolved Experts, Evolved Selector (EE-ES). In this condition the actors of 
both the experts and the selector are evolved, and no learning takes place. 

4. Single Learning Expert (SLE). In this condition no evolution takes place, and 
a simple expert is used to directly tackle each of the six adult tasks on the ba-
sis of only extrinsic rewards (weights were reset at the beginning of each task 
to avoid interferences between different tasks). 

3 Results 

Direct observation of the behavior of the evolved individuals indicates that organisms 
endowed with the hierarchical architecture we have presented (that is those of all but 
the SLE condition) tend to solve their tasks in the following way. Experts tend to 
specialize for following one color each, while the selector tend to compose experts’ 
basic skills so to navigate on the colored lines and then choose the most appropriate 
direction at each junction (for a more detailed analysis, see [19]). This is particularly 
true for organisms of conditions LE-LS and EE-LS, that is the conditions in which 
the selector can learn during life how to make the best possible use of the experts’ 
skills.  

In order to compare the results of the four conditions, we present three kinds of 
statistics, which are meant to assess different properties of the various systems: (a) 
fitness of the best individuals along generations reveals systems’ evolvability; (b) 
performance throughout a long learning period reveals systems’ learning speed; (c) 
performance after a long period of learning reveals systems’ steady-state ability.  

Fig. 3a reports the fitness of the best individuals along 100 generations for the 
three conditions involving evolution: LE-LS, EE-LS and EE-ES. The most striking 
result is that the condition LE-LS is clearly far more evolvable than the other two 
conditions: it requires about an order of magnitude less generations than the other two 
to reach a steady state performance (about 10 vs. about 100). Moreover, the LE-LS 
condition has a higher reliability in different evolutionary runs (note the much smaller 
standard deviation in the graph). On the other side, EE-LS achieves a higher final 
fitness with respect to LE-LS. This happens because in the EE-LS condition, evolu-
tion is able to find highly accurate and reliable experts (data not reported), whereas 
the learning of the experts during childhood is always noisy, and results in the acqui-
sition of sub-optimal basic skills. However, this limit might be reduced or even over-
come by prolonging the rather short childhood phase used here and/or by optimizing 
the experts’ learning parameters like learning rate and discount factor. Another re-
markable result is that the EE-ES condition produces individuals with a quite high 
fitness, at the same level of the LE-LS condition (consider that in the EE-ES condi-



tion the selector is evolved, and hence robots in this condition must find a single 
solution for all the six different tasks). This is due to the well-known remarkable 
ability of evolutionary searches to find very ‘smart’ solution to difficult problems 
[25]. In particular, evolved organisms of the EE-ES condition typically produce a 
stereotyped behavior such that the robot follows a circular path at maximum speed 
which includes most of the target positions: in this way, some tasks are accomplished 
very efficiently, other with a reasonable efficiency, while other targets are never 
reached at all. This fact, together with the fact that the behavior of these robots is 
completely inherited, and hence fully developed from birth, explains the quite good 
performance reached by this condition. 

Fig. 3b shows the learning curves of the three conditions involving learning: LE-
LS, EE-LS and SLE over 1,000,000 cycles (for each task). The most important result 
is that the compositional strategies (LE-LS and EE-LS) clearly outperform the 
‘monolithic’ strategy (SLE) in terms of learning speed. On the other hand, EE-LS and 
SLE outperform LE-LS in terms of final performance. In the same vein as the result 
on fitness discussed above, this is explained by the fact that EE-LS can evolve highly 
reliable experts, SLE can train its only expert during a very long period of test 
(1,000,000 cycles), whereas LE-LS can only sub-optimally train its three experts 
during the relatively short childhood phase (150,000 cycles). Finally, the higher fit-
ness of EE-LS with respect to SLE is due to the fact that the former can solve its tasks 
by efficiently combining useful low-level skills rather than by relying on one single 
actor. 

 

Fig. 3. (a) Evolution of the fitness of the best individuals (averaged over 10 runs) along 100 
generations, for the three conditions involving evolution: LE-LS (bold line), EE-LS (gray line), 
and EE-ES (dashed line). The graph also reports standard deviations. (b) Average performance 
during learning tests lasting 1,000,000 cycles for the three conditions involving learning: LE-
LS (bold line), EE-LS (gray line), and SLE (dashed line). Curves refer to the average perform-
ance (normalized number of received rewards) of the 10 best individuals of each of 10 runs on 
10 tests for each of the 6 tasks (i.e. average of 10×10×6 tests). (c) Steady-state performance 
level of all the four conditions measured as average over the last 100,000 cycles of the data 
reported in graph ‘b’ (dark gray bars: average over 10 runs; light gray bars: best run). For the 
EE-ES condition the test of graph ‘b’ was run with no learning process taking place. 



Fig. 3c shows the steady state level of performance achieved in all the four condi-
tions at the end of learning: these tests allow to compare final performance independ-
ently from the time spent to acquire behavior. The results show that EE-ES has the 
lowest performance as it pays the costs of its rigid behavior. LE-LS has a perform-
ance lower than EE-LS and SLE because of the mentioned difficulty to optimize the 
experts in the short childhood phase. Finally, EE-LS slightly outperforms SLE be-
cause of the higher mentioned efficiency of the compositional strategy that can rely 
upon specialized experts. 

4   Discussion and Future Work 

This paper investigated the role played by evolution and learning in adaptive behavior 
when learning processes during life take place in two stages, one where the systems 
acquire flexible sensorimotor skills on the basis of intrinsic motivations (as a general 
drive to explore) and a second one where those skills are assembled to accomplish 
tasks that directly increase fitness (e.g., allow eating) on the basis of extrinsic rewards 
(e.g. pleasure from food). To this purpose, we used a reinforcement-learning hierar-
chical neural-network architecture as the control system of a simulated robot and we 
evaluated the effects of applying either evolution or learning to the various compo-
nents of the system. 

The results highlighted various interesting phenomena related to the relative 
strengths and limits of evolution and learning, and to their complementary roles in 
producing adaptive behavior. First of all, the they clearly confirmed previous seminal 
works (see [1][3]) indicating that evolution alone has the limit of producing rigid 
behaviors whereas learning alone has the limit of exposing organisms to long periods 
of non-adaptive behavior. On the contrary, systems that build up adaptive behavior on 
the basis of both evolution and learning tend to have both the flexibility and fast ad-
aptation advantages provided by the two adaptive processes. With respect to the be-
havioral flexibility provided by learning, one should also consider that in the learning 
tests done in this paper robots were tested with the same tasks used during evolution. 
The advantages provided by learning would surely be much stronger if the systems 
were tested with tasks which have never been encountered during evolution: this 
might be a subject of investigation in future work. 

A novel interesting finding of this work is that within ‘mixed’ systems, which rely 
on both evolution and learning, developing innate low-level behaviors in the course 
of evolution might allow achieving a higher performance. This is in line with the 
presence of a few but important innate behaviors even in the most complex species 
such as primates. These are typically behaviors which are very directly related to 
fitness (like the behaviors implemented by the experts of our system) and for which a 
ready availability at birth is very important (examples of these are the motor reflexes 
or basic behaviors related to feeding such as salivation and babies’ suction reflex).  

On the other hand, our simulations clearly demonstrate that evolving general crite-
ria (reinforcers) for guiding learning of building-block behaviors is much easier than 
directly evolving behaviors themselves. Furthermore, the entity of this effect in the 
experiments presented here is so big that it suggests that such result might be caused 



not only by a difference in search spaces for the two conditions (in our experiments 
reinforcers have half the weights of the actors) but also by the fact that, generally 
speaking, evolving ‘goals’ might be much easier than evolving the behaviors that 
satisfy them (a similar suggestion has also been made by [2]). Future research should 
investigate more in detail why this is the case. 

Furthermore, and most important, our experiments clearly show that the costs of 
learning, namely the need to acquire behavior from scratch at every generation, can 
be significantly diminished if agents have a hierarchical control system architecture 
like the one presented here. In this case, organisms which have to tackle several dif-
ferent tasks during their life can accomplish this by combining general low-level 
abilities which might be either genetically inherited or acquired during a childhood 
phase. Indeed, the system that learned each behavior from scratch took nearly four 
times to reach a performance comparable to that of systems exploiting compositional 
strategies. This result strongly supports the motivations behind the Intrinsically Moti-
vated Reinforcement Learning framework. 

Although interesting, these results are preliminary in many respects, and their lim-
its suggest important problems for future research. First, several interesting condi-
tions have not been explored yet, for example the conditions in which: (a) the genetic 
algorithm evolves neither the actors of the experts (as in the EE-LS), nor their rein-
forcers (as in the LE-LS), but rather their evaluators (cf. [2]); (b) the whole hierarchi-
cal architecture is trained only on the basis of external task-related rewards; (c) learn-
ing and discount parameters are evolved; (d) not only expert’s reinforcers, but also 
their number is evolved. Second, the present architecture might be improved under 
various respects: for example the selector, which is supposed to operate at a more 
abstract level with respect to experts, should not operate at the same time-scale and 
with the same input as them. Notwithstanding these limits, we think that the work 
presented here is a first important step in the investigation of the relationships exist-
ing between evolution and compositional learning processes. 

References 

1. Nolfi, S.: Learning and Evolution in Neural Networks. In: Arbib, M. (ed.): The Handbook 
of Brain Theory and Neural Networks. The MIT Press, Cambridge, MA (2003) 415-418 

2. Ackley, D., Littman, M.: Interactions Between Learning and Evolution. In: Langton, C.G., 
Taylor C., Farmer J. D., Rasmussen S.: Artificial Life II. Addison-Wesley, New York 
(1991) 487-509  

3. Nolfi, S., Floreano, D.: Learning and Evolution. Autonomous Robots 1 (1999) 89-113 
4. Hinton, G., Nowlan, S.: How learning guides evolution, Complex Systems 1 (1987) 495-

502 
5. Belew, R., McInerney, J., Schraudolph, N.: Evolving networks: Using the genetic algo-

rithm with connectionist learning. In Langton, C.G.: Proceedings of the Second Confer-
ence on Arificial Life. Addison-Wesley, Reading, MA (1992)  

6. Di Ferdinando, A., Calabretta, R., Parisi, D.: Evolving Modular Architectures for Neural 
Networks. In French, R., Sougné, J.: Connectionist Models of Learning, Development and 
Evolution. Springer Verlag, London (2001) 253-262  



7. Urzelai, J., Floreano, D.: Evolution of Adaptive Synapses: Robots with Fast Adaptive 
Behavior in New Environments. Evolutionary Computation, 9(4) (2001) 495-524  

8. Niv, Y., Joel, D., Meilijson, I., Ruppin, E.: Evolution of Reinforcement Learning in For-
aging Bees: A Simple Explanation for Risk Averse Behavior. Neurocomputing 44(1) 
(2002) 951-956 

9. Eriksson, A., Capi, G., Doya, K.: Evolution of Meta-parameters in Reinforcement Learn-
ing Algorithms. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems 

10. Schmidhuber J.: A Possibility for Implementing Curiosity and Boredom in Model-
Building Neural Controllers”. In Meyer, J-A., Wilson, S.W.: From Animals to Animats: 
Proceedings of the First International Conference on Simulation of Adaptive Behavior, 
The MIT Press, Cambridge MA (1991) 222-227 

11. Barto, G., Singh, S., Chentanez, N.: Intrinsically Motivated Learning of Hierarchical 
Collections of Skills. In: Proceedings of the Third International Conference on Develop-
ment and Learning (2004). 

12. Huang, X., Weng, J.: Novelty and Reinforcement Learning in the Value System of Devel-
opmental Robots. In: Prince, C. G., Demiris, Y., Marom, Y., Kozima, H. , Balkenius, C.: 
Proceedings Second International Workshop on Epigenetic Robotics: Modeling Cognitive 
Development in Robotic Systems. Lund University Cognitive Studies, Lund (2002) 47-55  

13. Marshall, J., Blank, D., Meeden, L.: An Emergent Framework for Self-Motivation in 
Developmental Robotics. In: Proceedings of the Third International Conference on Devel-
opment and Learning (ICDL 2004) (2004) 104-111 

14. Oudeyer, P., Kaplan, F., Hafner, V.V.: Intrinsic Motivation Systems for Autonomous 
Mental Development. IEEE Transactions on Evolutionary Computation 11(1) (2007)  

15. White, R.W.: Motivation Reconsidered: The Concept of Competence. Psychological 
Review 66 (5) (1959) 297-333 

16. Berlyne, D.E.: Conflict, Arousal and Curiosity. McGraw-Hill, New York (1960)  
17. Stout, G.D., Konidaris, Barto, A.G.: Intrinsically Motivated Reinforcement Learning: A 

Promising Framework For Developmental Robot Learning. In. Proceedings of the AAAI 
Spring Symposium on Developmental Robotics (2005) 

18. Sutton, R., Precup, D., Singh, S.: Between MDPs and Semi-MDPs: A Framework for 
Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112 (1999) 181-
211  

19. Schembri, M., Mirolli, M., Baldassarre, G.: Evolving Internal Reinforcers for an Intrinsi-
cally Motivated Reinforcement-Learning Robot. 6th IEEE International Conference on 
Development and Learning (ICDL2007) (submitted)  

20. Baldassarre, G.: A Modular Neural-Network Model of the Basal Ganglia’s Role in Learn-
ing and Selecting Motor Behaviours. Journal of Cognitive Systems Research 3 (2002) 5-
13 

21. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, 
Cambridge MA (1998)  

22. Houk, J.C., Davis, J.L., Beiser, D.G.: Models of the Basal Ganglia. The MIT Press, Cam-
bridge MA (1995)  

23. Schultz, W.: Getting Formal with Dopamine and Reward. Neuron 36 (2002) 241-263  
24. Mannella, F., Baldassarre, G.: A Neural-Network Reinforcement-Learning Model of 

Domestic Chicks that Learn to Localise the Centre of Closed Arenas. Philosophical Trans-
actions of the Royal Society B – Biological Sciences 362(1479) (2007) 383-401 

25. Nolfi, S.: Evolutionary Robotics: Exploiting the Full Power of Self-Organization. Connec-
tion Science 10(3-4) (1998) 167-183 


