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Abstract

Intrinsic Motivations (i.e motivations not connected to reward-
related stimuli) drive humans and other biological agents to
autonomously learn different skills in absence of any biologi-
cal pressure or any assigned task. In this paper we investigate
which is the best learning signal for driving the training of dif-
ferent tasks in a modular architecture controlling a simulated
kinematic robotic arm that has to reach for different objects.
We compare the performance of the system varying the Intrin-
sic Motivation signal and we show how a Task Predictor whose
learning process is strictly connected to the competence of the
system in the tasks is able to generate the most suitable signal
for the autonomous learning of multiple skills.

Keywords: Intrinsic Motivations, Modular Architecture, Re-
inforcement Learning, Adaptive Behaviour, Simulated Robot,
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Introduction

Biological agents are able to learn and cash multiple skills
in order to use them whenever future situations will require
those competences. More interestingly, humans and other
mammals (e.g. rats and monkeys) are able to explore the
environment discovering and learning new abilities not only
on the basis of reward-related stimuli, but also on the ba-
sis of novel or unexpected neutral stimuli. The mechanisms
underlying these kind of learning processes have been stud-
ied since 1950s both in human and animal psychology under
the heading of “Intrinsic Motivations” (IMs) (e.g., White,
1959; Berlyne, 1960; Ryan & Deci, 2000). Recently, re-
searchers have also begun to investigate the neural basis of
such mechanisms both through experiments (e.g., Wittmann,
Daw, Seymour, & Dolan, 2008; Duzel, Bunzeck, Guitart-
Masip, & Duzel, 2010) and through computational models
(e.g., Kakade & Dayan, 2002; Mirolli, Santucci, & Baldas-
sarre, 2013) and nowadays IMs are becoming a central topic
of research (Baldassarre & Mirolli, 2013).

Looking at the computational literature, different IM mod-
els have been proposed both as methods to improve the ability
of artificial agents and as models of human and animal learn-
ing (Schmidhuber, 1991b; Kakade & Dayan, 2002; Barto,

Singh, & Chantanez, 2004; Schembri, Mirolli, & Baldassarre,
2007b; Oudeyer, Kaplan, & Hafner, 2007; Santucci, Baldas-
sarre, & Mirolli, 2010; Mirolli et al., 2013). IMs can be con-
sidered a useful tool to improve the implementation of more
autonomous and more adaptive artificial agents. Most of the
IM computational models are implemented within the frame-
work of reinforcement learning (Sutton & Barto, 1998), In
this framework, IMs are modelled as self-generated reward
signals able to drive the learning of the agent without any as-
signed “extrinsic” reward for specific tasks. Following the
work of Schmidhuber (1991a, 1991b), most of these models
implement intrinsic reinforcements as learning signals based
on the prediction error (or the improvement of the prediction
error) of a predictor of future states.

However, it is still not clear which kind of IM signal is the
most suitable for driving a system able to acquire and cash
different abilities to learn the largest number of skills in the
shortest time. To our knowledge, the only study dedicated to
this important issue is our previous work (Santucci, Baldas-
sarre, & Mirolli, 2012). In that work, we showed that when
the prediction error (or the improvement of the prediction er-
ror) is related to the prediction of any possible future state (as
proposed by Schmidhuber, 1991b, 2010) the system focuses
on actions that simply maximise that error, thus improving
the model of the world but without learning any particular
ability. Differently, if the learning process is driven by the
error in the prediction of a particular state (goal), the system
focuses only on actions related to the specific target, building
a task/goal-oriented model of the world able to foster compe-
tence acquisition. Furthermore, we analysed different mech-
anisms for the implementation of such a signal. The results
showed that the best mechanism was not based on step-by-
step predictions determined by the perceptive results of each
movement, but on predictions about the achievement of the
goal made at the beginning of every trial (i.e., when the sys-
tem decides to pursue a particular goal). Indeed, only this
mechanism guarantees a close coupling between the intrinsic
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Figure 1: The two dimensional work space of the simulated
kinematic robotic arm with the target objects. Small light-
grey objects are unreachable by the arm

reinforcement signal and the actual competence acquired by
the system. Such a signal is present only when a skill is learnt
while it fades away when the competence has been acquired
and the predictor is able to anticipate the achievement of the
goal.

However, that work presented two main limitations: 1)
it analysed only the prediction error signal produced in the
learning of a single task, not considering if such a signal could
be useful to autonomously learn multiple skills; 2) the experi-
ments took place in a simple grid-world scenario with discrete
states and actions, while our interest is in animal, human and
robotic learning which takes place in continuous states and
actions.

In this paper, we cope with both these two limitations: 1)
we investigate which is the best IM signal to drive the selec-
tion and acquisition of multiple skills in a hierarchical and
modular system able to learn and cash different abilities in
different modules; 2) we test the system in a robotic set-up
with continuous states and actions.

Setup
The task and the simulated robot

The task (Fig. 1) consists in learning to reach circular objects
placed within the work space of a simulated robotic arm. The
system has to learn in the best way and possible shortest time
the largest number of different skills, based on solely IM sig-
nals. There are 8 different objects: 2 are easy, 2 are difficult,
and 4 are impossible to reach (we estimated the difficulty of
different tasks by measuring the average time needed for an
expert to reach 95% performance). This choice is due to the
fact that in any moment an agent (be it an animal, a human or
a robot) can try to learn a number of different abilities that
typically vary considerably with respect to their learnabil-
ity, including many (probably the vast majority) that are not
learnable at all (consider, for example, trying to learn to reach
the ceiling). For this reason, it is important for a learning sys-
tem to avoid trying to learn unlearnable skills and to focus for
the proper amount of time on those that can be learned.

The system is a simulated kinematic robot composed by a
two degree-of-freedom arm with a “hand” that can reach for
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Figure 2: The modular architecture of the controller. The n
actor-critic experts, the selector with » units and the predictor
that generates the signal driving the selector, where n is the
number of the tasks

objects. The sensory system of the robot encodes the propri-
oception, i.e. the angles of the two joints of the arm. The
output of the controller determines the displacement of the
two joints in the next time step.

Architecture, input coding and learning

In order to avoid the well known problem of catastrophic for-
getting (McCloskey & Cohen, 1989), for which previously
learned abilities are disrupted by new ones, we needed an
architecture where different abilities are cashed in different
parts of the system. For this reason, the controller of the
arm consists of a modular architecture (Fig. 2) composed by
n experts (8 in this implementation, one for each task to be
learned) and a selector that determines which task/expert will
be trained. For simplicity, selecting a particular expert corre-
sponds to selecting a task because each expert is rewarded
only for reaching the associated object (this assumption is
neutral with respect to the aim and results of the paper).

Each expert is a neural network implementation of the
actor-critic architecture (Sutton & Barto, 1998) adapted to
work with continuous state and action spaces (Doya, 2000).
Both the critic and the actor of the experts receive as input
the angles of the two joints of the arm, o and 3 (ranging in [0,
180]), coded through Gaussian radial basis functions (RBF)
(Pouget & Snyder, 2000) in a two dimensional 10X10 grid.
The evaluation of the critic of each expert (V) is a linear com-
bination of the weighted sum of the respective input units.
The actor of each expert has two output units fully connected
with the input, with a logistic transfer function:
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where b; is the bias of output unit j, N is the number of input
units,q; is the activation of unit i and w; is the weight of the
connection linking input unit i to output unit j. Each motor
command o’; is generated by adding noise to the activation of
the relative output unit:

oﬁzoj—i-q



where ¢ is a random value uniformly drawn in [-0.1; 0.1].
The resulting commands (ranging in [0; 1]) are remapped in
[-25, 25] degrees and control the displacement of the related
arm joint.

In each trial, the expert that controls the arm is trained
through a TD reinforcement learning algorithm (Sutton,
1988). The TD-error & is computed as:

8= (R, +yV)-v'!

where R, is the reinforcement for the expert at time step ¢,
V! is the evaluation of the critic at time step #, and 7 is a dis-
count factor, set to 0.9. The reinforcement is set to 1 when the
hand touches the object associated with the selected expert, O
otherwise.

The connection weight wy,; of input unit i of critic n is up-
dated in the standard way:

Awy; = nCSna,»

where 1° is the learning rate of the critic, set to 0.08.

The weights of the actor are updated as follows (see

(Schembri, Mirolli, & Baldassarre, 2007a)):

Awji =18, (0 —0j)(0j(1 - 0j))ai
where n¢ is the learning rate of the actor, set to 0.8, 07- —0;j
is the discrepancy between the action executed by the system
(with noise) and that produced by the controller, and 0;(1 —
0;) is the derivative of the sigmoid function.

The selector of the experts is composed by # units, one for
each expert/task to be trained/learnt. At the beginning of ev-
ery trial the selector determines, through a softmax selection
rule (Sutton & Barto, 1998) with temperature set to 0.01 (we
tested different values and selected the one that guarantees the
best performance), which expert will control the arm during
that trial. The activity of each unit of the selector is deter-
mined by a rule used to cope with n-armed bandit problems
with non-stationary reward (Sutton & Barto, 1998)

K" =K'r+o[R'ry— K'r]

where K'r is the activation of the unit corresponding to the
selected expert during trial #r, o is a temporal parameter set
to 0.35 (the value that we found to give the best performance)
and R'rg is the reinforcement signal obtained by the selec-
tor. More precisely, R'r is the intrinsic reinforcement that
we want to analyse in order to find the most suitable signal for
these kind of learning processes. It is determined by the er-
ror in predicting the achievement of the selected task: 0 when
the arm is not able to reach the target object and 1-p when the
object is reached, where p is the output of the predictor.

Since the focus of the present work is the comparison of
different IM signals able to drive the selector of a hierarchi-
cal architecture in guiding the learning of multiple skills, we
tested the system in different conditions varying for the im-
plementation of the IM mechanism that generates the intrinsic
reinforcement for the selector.

IM reinforcement signals

In this section we describe the different IM mechanisms im-
plemented. Note that all the predictors also receive as input
the information about which expert/task has been selected for
controlling the robot during the current trial. The output of
all the mechanisms is a prediction about the achievement of
the target state related to the selected task.

State-Action Predictor (SAP) The input of this predictor
is the same as the one provided to the majority of IM mech-
anisms implemented in literature (e.g., Schmidhuber, 1991b;
Oudeyer et al., 2007; Santucci et al., 2010). It is composed by
the present state (the two joints of the arm) and the planned
action (Ao and AP). Input is coded through RBF and training
follows a standard delta rule.

State Predictor (SP) The SP is not widespread in the liter-
ature (a similar predictor can be found in Barto et al., 2004).
In our previous work (Santucci et al., 2012) we found that
this kind of mechanisms could be more closely coupled to
the competence of the system than the SAP. Its input is com-
posed only by the actual state of the arm and is coded through
RBE. Training follows a standard delta rule.

SAP-TD SAP-TD has the same input of SAP but it is
trained through a TD-learning algorithm with a discount fac-
tor set to 0.99. This type of predictor derives from the knowl-
edge we acquired in previous works (Santucci et al., 2010;
Mirolli et al., 2013), where we found that normal predictors
have many problems in anticipating future state when work-
ing in continuous states and actions. Providing the predictors
with a TD algorithm solves some of these problems (for a
generalisation of TD-learning to general predictions, see Sut-
ton & Tanner, 2005).

SP-TD As SAP-TD, this predictor is the TD version of SP.

Task Predictor (TP) This predictor is inspired by our pre-
vious work (Santucci et al., 2012) and it is similar to the
mechanism present in Hart and Grupen (2013). It does not
make step-by-step predictions as the previous mechanisms,
but a single prediction on the achievement of the selected
task at the beginning of the trial. The input of this predic-
tor consists only in the information about the task/expert that
has been selected (encoded in a n-long binary vector), and
the predictor is trained through a standard delta rule. These
characteristics should provide a complete coupling between
the signal generated by the predictor and the competence of
the system in achieving the tasks: the predictor has no fur-
ther information and can learn to anticipate the achievement
of the target state only when the agent has really acquired a
high competence in the related skill.

Results

The experiments last 400,000 trials, each trial ending if the
selected expert reaches its target object or after a time out of
20 time steps. Fig. 3 shows the number of trials needed by
the different conditions to achieve a performance of 95% in
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Figure 3: Number of trials needed by the different conditions
to achieve a performance of 95% in the 4 learnable tasks (av-
erage results of 20 replications) with different learning rates
for the predictors. If a condition has not reached the target
performance, we report above the corresponding bar the av-
erage performance at the end of the simulation

the 4 learnable tasks (average results of 20 replications). For
each condition we ran different experiments varying the value
of the learning rate (LR) of the predictor (x-axis), because we
wanted to be sure that results were not dependent on the use
of a specific set of LRs.

As shown by the results, SAP and SP generate a signal
that is not able to drive the system in acquiring a good per-
formance, with SP achieving a better performance than SAP.
The other conditions are able to reach the target performance
within the time limit, but the efficiency of the learning process
is different between them. SP-TD always takes the longest
time in achieving the target performance and in two cases it
reaches the 95% only at the end of the experiment. SAP-TD
performs better than SP-TD, but it is sensitive to the value of
the LR and often takes many trials to complete the tasks (es-
pecially with high LR values). Differently, TP is always the
best performer, allowing the system to reach the target perfor-
mance in less than 150,000 trials independently of the value
of the LR.

To understand the causes of these results, for each con-
dition we analysed the learning process of a representative
replication (consider that all the replications have similar de-
velopments). In particular, we focused on data showing the
selections of the different experts during time and the level of
performance achieved on the tasks (for simplicity and clarity,
we only show data related to the 4 learnable tasks within the
first 150,000 trials). In this way we can check if the intrin-
sic reinforcement signal generated by the predictors is able to
drive the selector in a proper way, following the actual com-
petence acquired by the experts.

Fig. 4 shows data related to SAP and SP conditions. As
described in the previous section, we knew that these kinds
of predictors could have problems with continuous space and
actions. In SAP the system starts focusing on Task 2 and
because the predictor is not able to properly anticipate the
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Figure 4: Performance on the 4 learnable tasks (top) and se-
lection probability for the associated expert (bottom) in a rep-
resentative replication of the SAP and SP conditions. SP fig-
ures have a different scale to better show the change in the
behaviour during the simulation

achievement of the target object, the intrinsic reinforcement
signal for that task is not cancelled and the selector is not able
to switch to different experts and learn all the skills. In SP the
system is able to learn the two easy tasks and, at a certain
point, to shift to one of difficult tasks (Task 4): however, the
predictor presents problems similar to those of SP condition
and is not able to learn the remaining task.

Fig.5 shows data related to the other implemented condi-
tions. While SAP and SP have the problem of not being able
to properly anticipate the achievement of the target states,
SAP-TD and SP-TD have the opposite problem: these mech-
anisms learn very fast to predict the reaching of the objects,
even faster than the actual competence of the system in those
tasks. The learning process of these predictors is not strictly
coupled with the ability of the system to reach for the objects.

This is clear if we look at the figures related to SAP-TD:
the selector reduces the selection of an expert before that ex-
pert has achieved an high performance in the related task.
While this does not affect the learning of easier tasks (they
need very few trails to be trained), this is a problem for the
complex ones: because the predictor cancelled all the intrin-
sic reinforcement signals to the selector, experts start to be
selected randomly, thus loosing time on previously learned
(easy) tasks, which impairs the training of the difficult ones.

This is even more evident in data related to SP-TD, where
the predictor drastically cancel the signals determining a ran-
dom selections already from the early trials. The reason is
that having only the actual state as input, the SP-TD mech-
anisms is able to generalise better than the SAP-TD: since
from a single state there are many different actions that bring
to the target object, SP-TD is able to generalise among all
those actions, while SAP-TD has to learn to anticipate the
achievement of the tasks using the different actions that it re-
ceives as input.

Differently, the TP mechanism is able to generate a signal
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Figure 5: Data related to SAP-TD, SP-TD and TP conditions. See Fig.4 for description

that persists until the system has learnt the related task, pro-
viding a learning focus that moves from one skill to another.
If we look at the selection of the experts and compare it to the
performance in the related tasks we can see how the selector
switches from the expert that is currently selecting only when
its performance has achieved an high value. This guarantees
the complete acquisition of competence and a reduction of
the total amount of learning time, because no trials are spent
on previously learnt tasks: obviously, when all the experts are
trained, the system starts a random selection because no task
produces reinforcements for the selector any more.

Conclusions and future works

In this paper we modelled the characteristic, typical of hu-
mans and other animals, of autonomously learning multiple
skills on the basis of what have been called Intrinsic Motiva-
tions, focusing on which is the intrinsic reinforcement signal
that is best suited for driving the acquisition of several skills
in the shortest time. In particular, we implemented a modu-
lar architecture composed by different experts and a selector
that determines which task/expert will be trained on the ba-
sis of an IM signal. We tested different IM mechanisms and
compared the performance of the system in learning different
tasks.

The experiments show that the best performance is
achieved by the system whose selector is reinforced by a sig-
nal determined by the error in predicting the achievement of
the target state only on the basis of the selected expert/task.
The reason is that this is the best way to couple the intrinsic
reinforcement signal driving the selection with the compe-
tence of the experts in achieving their goals. In particular, in
this way the intrinsic reinforcement is present when the sys-
tem is learning a new task, it is cancelled when the compe-

tence on that task has been learnt and reappears when a new,
still-to-be-learnt task is encountered by the system.

Differently, the other implemented mechanisms (inspired
by the current computational literature on IM) generate sig-
nals that determines lower performances. Some (SP and
SAP) lack the complexity required to cope with continuous
states and actions. In the other cases, the additional infor-
mation provided to SP-TD (actual state of the system) and
SAP-TD (actual state plus planned actions) made the result-
ing signals suitable for measuring the knowledge of the sys-
tem in anticipating future states given the current information
but less effective for driving the acquisition of several skills
because those signals are less directly connected to the com-
petence of the system and they can disappear before the agent
has learnt the related task.

The system proposed in this paper may encounter prob-
lem in stochastic environments: if the achievement of a target
state is probabilistic, the predictor will continue to make er-
rors indefinitely. This means that the reinforcement will never
be completely cancelled and the system may keep on trying
to train a skill even if it cannot improve any more. In order
to solve this problem, several systems (e.g. (Schmidhuber,
1991b; Oudeyer et al., 2007)) use the prediction improvement
rather than the prediction error as IM signals. In future work
we plan to merge the idea of prediction improvement with
that of expert-based prediction proposed in this paper, as we
did in Santucci et al. (2012) , in a robotic modular system as
the one implemented in this work.

Another limit of the present work is that in the current ex-
perimental set up we decided that reaching for the objects was
the task to learn for our system. But if we are interested in
truly autonomous development, in future works we will need
the agent to be able to self-determine its goals. This will prob-



ably require the introduction of other complementary intrin-
sic motivation signals that can make the agent autonomously
select useful and achievable goals (for a discussion of how
different IM mechanisms might serve different sub-functions
even if the general function is driving the acquisition of skills,
see Mirolli & Baldassarre, 2013).
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