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Abstract—In our previous research we focused on the role of
Intrinsically Motivated learning signals in driving the selection
and learning of different skills. This work makes a further step
towards more autonomous and versatile robots by implementing
a 3-level hierarchical architecture that provides a system with
the necessary mechanisms to both select goals to pursue and
search for the best way to achieve them. In particular, we focus
on the crucial importance of providing artificial agents with
a decoupled architecture that separates the selection of goals
from the selection of solutions. To verify our hypothesis, we
use the architecture to control the two redundant arms of a
simulated iCub robotic platform tested in a reaching task within
a 3d environment. We compare its performance to the one of
a system with a coupled architecture where the different goals
are associated at design-time to different modules controlling the
robot.

I. INTRODUCTION

Developing artificial agents able to autonomously discover,
select and solve new tasks is an important issue for robotics.
This becomes even crucial if we want our robots to interact
with real environments where agents have to face many
unpredictable problems and where it is not clear which skills
will be the more suitable to accomplish different goals.

Intrinsic Motivations (IMs) identify the ability of humans
and other mammals (e.g, rats and monkeys) to modify their
behaviour and learn new skills in the absence of a direct
biological pressure. First studied in animal psychology (e.g.
[1] [2]) and human psychology (e.g. [3] [4]), recently IMs
have been investigated also with respect to their neural basis,
with both experiments (e.g. [5] [6]) and computational models
(e.g. [7] [8]).

IM learning signals can be considered a useful tool for
the implementation of more autonomous and versatile robots,
driving the formation of ample repertoires of skills without
any assigned reward or task. In the last decades many compu-
tational researches based on IMs have been proposed (e.g. [9]
[10] [11] [12] [13] [14]) and nowadays IMs are an important
field of research also within robotics [15].

In particular, IMs can play an important role in guiding an
artificial system to select its own goals: when many different
skills can be acquired, it is crucial for the system to properly
select only those that can be learnt and to focus on them
only for the the time necessary to learn them. In previous
work [16] we analysed which IM signal is more suitable
to drive the selection and learning of multiple skills in a
robotic system implemented with a hierarchical architecture.
We compared different signals taken from the computational
literature and we found that the best signals were based on
the prediction error (PE), or prediction error improvement
(PEI), of a predictor of the competence of the system in
achieving the goals. These results underlined the role of goals
in improving robotic learning processes [17] [18] [13] and the
importance of using competence-based IM (CB-IMs) instead
of knowledge-based IM (KB-IMs) learning signals to optimise
the acquisition of a repertoire of skills (on the difference
between CB-IMs and KB-IMs see [19] [20]).

In [16] we used a simple robotic setup, involving a 2
degrees-of-freedom (2DoF) robotic arm, tested in a 2D en-
vironment. Moreover, the architecture presented a significant
limitation: a fixed coupling between the goals and the “ex-
perts” (modules), so that the system was forced to use a
specific expert to learn a specific task.

Here we implement a more complex experimental setup,
using the two redundant arms of a simulated iCub robotic plat-
form tested in a reaching experiment within a 3d environment.
We then focus on tackling the limit of our previous architec-
ture, implementing the same CB-IM mechanism identified in
[16] in a 3-levels hierarchical architecture that guarantees a
decoupling between selected goals and experts. The system is
so able not only to autonomously choose its own goals but
also to autonomously determine with which expert (and hence
effector) trying to achieve it and learn the related skill.

In particular, we focus on the importance of such a decou-
pled architecture to enhance the flexibility of artificial systems



Fig. 1. The experimental setup, with the simulated iCub and the 4 objects.
The green objects are those that the decoupled system learns to reach with
the left arm, the blue object is reached with the right arm

and to improve their ability to autonomously discover suitable
solutions to different problems. To verify our hypothesis,
we compare the new system to one with fixed connections
between goals and experts showing and analysing their per-
formances in a reaching task where it is not clear which is the
most suitable arm to reach for the different objects.

II. SETUP

A. The simulated robot and the experimental setup

The robot is a reproduction of the iCub robotic platform,
implemented with the FARSA simulator [21] developed in
our institute (http://laral.istc.cnr.it/farsa). In the experiments
presented here we only use the two redundant arms of the robot
with 4DoF (the joints of the wrist and those of the fingers are
kept fixed) in kinematic modality, so that collisions (that are
not necessary for this test) are not taken into considerations.
The fingers of the two hands are all closed with the exception
of the two forefingers that are kept straight.

The task (Fig. 1) consists in learning to reach with the
fingertip of the forefingers to the 4 fixed spherical objects (with
radius set to 0.04 metres) positioned in the workspace of the
two arms of the robot. Since we want to test the importance
for an artificial system to autonomously search for the best
solutions to the goals, the objects are all close to the Y axis
that divides the workspace of the arms in right and left. The
objects are all reachable using both the two hands of the robot,
however it is not evident a priori which is the best solution
(i.e. which arm to use to reduce the time spent in learning the
task) to reach for each different object.

Note that this is just a simple example of a more general
problem that real robots have to face in real environments: the
impossibility of determining at design-time which will be the
best strategy to interact with the world.

B. Architecture and coding

Since we want the robot to learn different skills and
store them in its repertoire of actions, we use a hierarchical
architecture where different abilities are stored in different

components (the experts) of the system [22]. In our previous
work, the system presented a 2-levels hierarchical architecture,
with a goal selector determining on which goal the robot
focused on each trial and different experts learning and storing
the different skills. However, in that architecture the experts
were coupled with the different goals at design-time, so that
selecting a goal determined also with which expert the system
tried to achieve it. This was a great limitation since a truly
autonomous agent has to be able to select not only its goals
but also how to achieve them. This is crucial because it is not
possible to establish a priori the expert that is the proper one to
learn a specific skill. For example, in the task presented here, it
is not possible to determine which is the best arm to reach an
object only on the basis of its position. In this sense, we define
as a “coupled system” (CS) an architecture that, similarly to
our previous work, has fixed connections between goals and
experts used to achieve them, while we define as a “decoupled
system” (DS) an architecture that is able to autonomously
select both its goals and how to accomplish them (i.e. the
expert controlling the robot effectors).

To verify the importance of such a decoupled architecture
to foster the autonomy and flexibility of artificial agents, in
the present work we implement a DS with 3-levels (Fig. 2):
1) a high-level selector that determines which goal to pursue
(here the object that the robot is trying to reach); 2) a low-
level selector that determines which expert controls the robot,
hence the arm used to reach the goal and learn the related
skill; 3) a control layer of n experts, half controlling the right
arm half controlling the left arm.

The goal selector is composed by 4 units, one for each
possible goal (the 4 spheres). At the beginning of every
trial, it determines through a winner-takes-all (WTA) softmax
selection rule [23] which goal to pursue. The probability of
unit k to be selected (pk) is thus:

pk =
expQk

τ∑n
i=0 exp

Qn

τ

(1)

where Qk is the value of unit k and τ is the temperature value,
set to 0.008, which regulates the stocasticity of the selection.
The activation of each unit is determined by an exponential
moving average (EMA, with a smoothing factor set to 0.35)
of the intrinsic reinforcement obtained for pursuing that goal
(for the description of the CB-IM mechanism generating the
IM reinforcement signal, see Sec. II-C).

The selector of the experts is formed by n units, one for each
expert, fully connected with the units of the goal selector. At
the beginning of every trial it receives as input the information
on which goal has been selected by the goal selector (encoded
in a 4-elements binary vector) and determines the expert
(and hence the arm) controlled by the system during the
trial through a WTA softmax selection rule (see Eq. 1) with
temperature set to 0.05. The activity of each unit is determined
by the weight connecting that unit with the one of the selected
goal. At each trial, the weight is updated through an EMA
(with smoothing factor set to 0.35) of the reward obtained to
achieve the selected goal (1 for success, 0 otherwise).
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Fig. 2. The 3-level hierarchical architecture implemented to control the robot together with the mechanism (the predictor) determining the CB-IM signal.
For a detailed description see Sec. II-B

Each expert is a neural network implementation of the actor-
critic architecture [24] adapted to work with continuous state
and action spaces [25]. The input to each expert consists in the
4 actuated joints of the related arm (3 joints for the shoulder,
1 for the elbow), α β γ δ (all within the ranges of the real
robot), coded through Gaussian radial basis functions (RBF)
[26] in a 4 dimensional grid with 5 units per dimension.

The evaluation of the critic (V ) of each expert is a linear
combination of the weighted sum of the input units plus a bias
unit with fixed input set to 1. The actor of each expert has 4
output units, fully connected with the input, with a logistic
transfer function:

oj = Φ

(
bj +

N∑
i

wjiai

)
Φ(x) =

1

1 + e−x
(2)

where bj is the bias of output unit j, N is the number of
input units, ai is the activation of input unit i and wji is the
weight of the connection linking unit i to unit j. Each motor
command omj is determined by adding noise to the activation
of the relative output unit j (oj). Since the controller of the
robot modifies the velocity of the joints progressively, a simple
random noise would turn out to determine extremely little
movements. For this reason, similarly to [25], we generate
the noise value (nv) with a normal Gaussian distribution with
average 0 and standard deviation (SD) 2.0 and pass it through
an EMA with a smoothing factor set to 0.08.

To reduce the time spent by the experts to reach the
targets when their competence improves, we implemented an
algorithm to let the system self-modulate the generated nv,
changing the SD for each expert with a “noise-decrease value”
(ndv) determined by an EMA (with smoothing factor set to
0.0005) of the success of the expert in reaching the targets (1
for success, 0 otherwise). More precisely, the SD for expert e
at time t (SDet) is calculated as follow:

SDet = SD(1− ndv) (3)

The actual motor commands are then generated as follows:

omj = oj + nv (4)

where the resulting commands are limited in [0; 1] and then
remapped to the velocity range of the respective joints of the
robot determining the applied velocity (vα, vβ etc.).

The experts are trained through a TD reinforcement learning
algorithm. The TD-error of expert e (TDerre) is computed as:

TDerre = (Rte + γkV
t
e )− V t−1

e (5)

where Rte is the reinforcement for the expert at time step t,
V te is the evaluation of the critic at time step t, and γ is a
discount factor set to 0.99. The reinforcement is 1 when the
robot touches the selected target, 0 otherwise. The connection
weight wi of critic input unit i is updated as usual [23]:

∆wi = ηcδai (6)



Fig. 3. Performance on reaching the different objects (Goal 1, 2, 3 and 4. The label R means the related object is positioned on the right with respect to
the Y axis dividing the workspace; label L means the object is positioned on the left) and average performance on all the objects (Average Performance) of
the DS (left) and the CS (right).

where ηc is a learning rate, set to 0.02. The weights of each
actor are updated as follows [27]:

∆wji = ηaδ(omj − oj)(oj(1− oj))ai (7)

where ηa is the learning rate, set to 0.4, omj − oj is the differ-
ence between the action executed by the system (determined
by adding noise) and that produced by the controller, and
oj(1− oj) is the derivative of the logistic function.

C. CB-IM mechanism

The reinforcement signal (Rts) driving the selection of the
goals is the intrinsic reinforcement generated by the CB-
IM mechanism we identified in [16] as the best suitable to
drive the selection of different goals and the acquisition of
the related skills. In particular, Rts is the prediction error
improvement (PEI) of a predictor that receives the selected
goal as input (encoded in a 4-elements binary vector, with 4
being the number of the goals) and produces a prediction in
the range [0, 1] on the achievement (within the time-out of the
trial) of the selected goal. At time t, the PEI is calculated as
the difference between the average absolute prediction errors
(PEs) calculated over a period T of 40 trials:

PEIt =

∑t−T
i=t−(2T−1) |PE|i

T
−
∑t
i=t−(T−1) |PE|i

T
(8)

The predictor is trained through a standard delta rule using
the achievement of the selected goal as teaching input (1 for
success, 0 otherwise) and with a learning rate set to 0.05.

D. Compared systems and experimental settings

To test the importance for an artificial system to au-
tonomously select and learn how to achieve different goals,
we compare the presented system to one with an architecture
similar to [16], where there was no decoupling between the
experts and the goals. In such a CS the first and second level of
our new architecture are flattened in a single layer, so that the
unique selector selects an expert to which is directly associated
a goal (the object to be touched). All the other elements,
mechanisms and parameters are identical for both architectures
except for the number of experts.

Since it is possible that the best solution is to reach for
every object with the same arm, the decoupled system (DS)
has 8 experts, 4 controlling each arm, so that is potentially
able to learn to reach every object with a different expert of
the same arm. Differently, the coupled system (CS) has only 4
experts, 2 for each arm: we associate the spheres on the right
side of Y axis with the experts controlling the right arm (1
each) and those on the left side with the 2 experts controlling
the left arm (1 each).

The experiment lasts 20,000 trials. At the beginning of every
trial the goal selector determines which of the 4 spheres is the
target. Then, in the DS the selector of the experts determines
which expert (and hence which arm) will be used to learn to
reach for that object, while in the CS the control goes to the
expert (and to the arm) associated at design-time to that object.
The joints of the selected arm are then randomly initialised.
The trial ends when the selected goal is achieved (the robot
touches the selected object) or after a time out of 800 time
steps, each lasting 0.05 seconds.

III. RESULTS

The performance of the two systems in the reaching task
is shown in Fig. 3 (data show the average performance of 20
replications of each experiment). As in [16] the CB-IM signal
is able to drive the systems to learn all the skills related to
the different goals. However, the DS learns significantly faster
than the CS. If we look at the single tasks we can see that while
the DS is able to learn to reach all the 4 objects very quickly,
the CS is able to rapidly learn to reach object 4 (even faster,
on average, than CS, that first focuses on the other objects)
while it takes more time to achieve an high performance on
the other goals, especially number 1 and 3. If we analyse the
results of the DS it is clear why this system performs better.

Fig. 4 summarises the solutions adopted by the DS to reach
the 4 objects in the different replications of the experiment. In
3 cases (objects 1, 2 and 3) the system learns to reach the target
with the opposite arm with respect to the position of the object
on the Y axis (see also Fig. 1). Those 3 cases are the goals
where the CS is slower than the DS. While our new system
has an architecture that is able to autonomously search for the
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Fig. 4. Summary of the solutions adopted by the DS to reach the different
objects, with respect to the position of the objects and the arm used to reach
for it in the 20 replications of the experiment.

best solution to achieve the different goals, the CS is forced,
by definition, to use the expert (and then the arm) associated
with an object at design-time when it is extremely difficult
(or even impossible, if we imagine more complex tasks) to
determine the most suitable strategy to learn each skill.

The DS instead is able to test the different experts and find
the solution that guarantees a better performance. In Fig. 5
we show the history of experts selections related to goal 1
in a representative replication of the experiment with the DS.
At the beginning, the system tries to achieve the goal with
different experts controlling both the arms but, after some time,
the system learns to achieve that goal by using always one of
the experts controlling the left arm. Note that, in principle, a
decoupled architecture may suffer the problem of catastrophic
interference [28] if it is not able to assign different experts to
different skills: however, this does not happen in our system,
which is able to efficiently learn to reach each object through
a different expert (on this issue see also [29] [30] [31]).

IV. CONCLUSION

In this work we implemented a 3-level hierarchical architec-
ture controlling the redundant arms of a simulated iCub robotic
platform and we tested the importance to autonomously select
the resources (the experts) to discover the best solutions to
achieve its autonomously-selected goals. To drive the au-
tonomous selection of goals, we used Intrinsic Motivations
(IMs) implemented through the mechanism generating the CB-
IM reinforcement signal that we identified in our previous
research [16]. We provided the system with an architecture that
allows the robot to autonomously select both its goal and the
expert (hence the arm) to achieve it. We built an experimental
setup consisting in a reaching tasks with 4 objects in a 3D
environment and we compared the implemented decoupled
system (DS) with a coupled system (CS) that has fixed
connection between goals and experts.

The results show that our autonomous system is able to
select and learn the different skills. Moreover, the experiments
show that the DS performs significantly better than the CS.
The reason of these results lies in the different structure of the
architectures of the two systems: the DS is able to discover
the best solutions to reach for the different objects while the
CS is forced to use the experts (and then the arm) associated
to each goal at design-time.

Fig. 5. Experts selection, with respect to the control of right arm (RA) and
left arm (LA), for the achievement of goal 1 in a representative replication
of the experiment with the DS. Data are related to the first 1,000 selections
of that goal. After them the system has learnt to systematically associate a
specific expert (exp 8 - LA) to the goal.

This is just a simple test to show a crucial issue for real
robots that have to act in complex environments: when there
are many different goals that can be achieved, it is not possible
to determine a priori which are the best strategies to solve all
the problems the robot will have to face. Improving the ability
of an artificial agent not only in selecting its own goals but
also in searching for the best solutions to reach them is a
necessary step towards more flexible and autonomous robots.
The architecture we presented in this work is able to guarantee
this two-level autonomy, supporting the system in exploring
different goals and finding the appropriate strategies to achieve
them faster.

In future works we will test the robot with more difficult
tasks and we will provide a wider range of different experts
to the system. Here the robot can only choose to control one
of the two arms, while a real agent can have more effectors to
interact with the world. Moreover, the experts can vary also
for their inputs and for their internal structure, providing
in this way different solutions also with the same effector.
We showed that a system endowed with our architecture is
able to autonomously select the resources (experts) to search
and learn the best strategies to achieve different goals: our
hypothesis is that the advantages of such an architecture
will be better enlightened if the system is tested in more
complex experimental setup or if the system has a wider range
of different computational resources to accomplish its goals.
Obviously, a simpler scenario where the best strategy is evident
at design-time will advantage a coupled system like CS, since
it does not have to waste time in searching for the best modules
to train its skills. However, such a scenario is far away from the
difficulties that a robot have to face in real-world environment,
where autonomy and versatility are crucial to the succeed.

Moreover, in future works we will tackle a limit that still
affects our architecture: the goals that the system can set
are given at the beginning of the experiment. A further step
towards more versatile agents is to provide the systems with
the ability to autonomously discover new goals. Some efforts



have been made in this direction in the field of hierarchical
reinforcement learning but most of them (e.g. [32] [33]) focus
on searching sub-goals on the basis of externally given tasks
(reward function). Only few works (e.g. [34] [35] [13]) try to
implement systems able to set their own goals independently
from any specific task, which is the crucial condition to move
towards a real open-ended autonomous development.
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