
Biological cumulative learning through intrinsic motivations
A simulated robotic study on the development of visually-guided reaching

Vieri G. Santucci, Gianluca Baldassarre, Marco Mirolli
Istituto di Scienze e Tecnologie della Cognizione, CNR

Via san Martino della Battaglia 44, 00185 Roma
{vieri.santucci, gianluca.baldassarre, marco.mirolli}@istc.cnr.it

Abstract
This work aims to model the ability of biological 

organisms to achieve cumulative learning, i.e. learning 
increasingly  more  complex  skills  on  the  basis  of 
simpler ones. In particular, we studied how a simulated 
kinematic robotic system composed of an arm and an 
eye can learn the ability to reach for an object on the 
basis of the ability to systematically look at the object, 
which, in our set-up, represented a prerequisite for the 
reaching  task.  We designed  the  system by following 
several  biological  constraints  and  we  investigated 
which kind of sub-task reinforcements might facilitate 
the development of the final  skill.  We found that  the 
performance in the reaching task was optimized when 
the reinforcement signal included not only the extrinsic 
reinforcement provided by touching the object but also 
an  intrinsic  reinforcement  given  by  the  error  in  the 
prediction  of  fovea  activation. We  discuss  how  our 
results  might  explain  biological  data  regarding  the 
neural  basis  of  action  discovery  and  reinforcement 
learning,  in  particular  with  respect  to  the 
neuromodulator dopamine. 

1. Introduction

One of the characteristics of biological organisms is 
the  ability  to  achieve  cumulative  learning,  i.e.  the 
possibility to learn different skills that are dependent on 
each  other.  For  example,  in  human  infants,  the 
development  of  visually-guided  reaching  seems  to 
depend on the development of the ability to orient the 
eyes towards the objects (Georgopoulos,  1986; Land, 
2006).  What  are  the  characteristics  of  the  brain  of 
natural organisms that might support such cumulative 
learning processes?

In  biological  agents  action  selection  and  learning 
seems to take  place in  the basal  ganglia  (BG: Doya, 
2000; Graybiel, 2005). Many studies suggest  that  the 
dorsal  regions  of  the  BG  implement  the  actor-critic 
reinforcement learning architecture that learns through 
the  temporal  difference  (TD)  learning  algorithm 
(Sutton and Barto, 1998). In particular,  the phasic burst 
of the neuromodulator dopamine has been proposed to 
represent  the  TD error  learning  signal  (Houk et.  al., 
1995; Schultz et al.,  1997; Schultz,  2002). Moreover, 
the  two  classes  of  BG  input  neurons  have  been 
proposed to  represent,  respectively,  the critic  and the 
actor of the actor-critic  reinforcement learning model 
(Barto, 1995, Joel et. al., 2002; Khamassi et. al., 2005): 

striosome  neurons,  which  project  to  dopaminergic 
(DA)  neurons  in  the  substantia  nigra  pars  compacta 
(SNc)  and  in  the  ventral  tegmental  area  (VTA),  are 
supposed to implement the critic, which evaluates the 
current state and provides the learning signal;  matrix 
neurons,  which,  through the pallidal  neurons and the 
thalamus, project to the cortical sensorymotor areas, are 
supposed  to  implement  the  actor,  which  selects  the 
actions to be performed.

The  ability  of  cumulative  learning  might  be 
supported  in  natural  organisms  by  a  certain  level  of 
modularity  in  animals  action  control  systems.  In 
particular,  there  is  evidence  (Romanelli  et  al.,  2005) 
that different effectors (e.g. the eye and the hand) are 
controlled  by different  basal-ganglia–thalamo–cortical 
pathways. On the other hand, it seems most likely that 
the  reinforcement  signals  that  determine  the  phasic 
activation of dopaminergic neurons are unique for all 
the sensory-motor  subsystems. This might  generate a 
non-trivial  problem,  since  the  reinforcement  signals 
caused by the actions of one controller might interfere 
with the learning of  another.  In computational  terms, 
the  problem  is  given  by  the  fact  that  reinforcement 
learning  algorithms  (including  the  TD  actor-critic 
architecture)  have  been  developed  for  solving 
Markovian  problems  (Sutton  and  Barto,  1998),  in 
which  both  the  transitions  between  states  and  the 
reinforcements  depend  exclusively  on  the  currently 
perceived state and on the system's actions, while the 
described  biological  organization  seems  to  imply  a 
non-Markovian situation in which both the transitions 
and the reinforcements  for  one sub-controller  depend 
also by the actions and the states of the others.

A possible solution to this problem might be found 
in another important biological phenomenon related to 
dopamine.  There  is  ample  evidence  (Horvitz,  2000) 
that  phasic  DA  is  triggered  not  only  by  extrinsic 
rewards (food, sex, etc.) but also by any kind of salient 
stimuli:  in  particular,  by  unexpected  changes  in  the 
environment.  These  and  other  findings  led  Redgrave 
and Gurney (2006) to criticize the parallel between DA 
and  TD  signals,  and  to  suggest  that  the  phasic 
dopamine could represent a 'novelty' signal that would 
permit the discovery and learning of new actions.

Here,  we propose that the two opposing positions 
regarding phasic dopamine might in fact be reconciled 
by  considering  DA  as  a  sort  of  TD  signal  of  a 
reinforcement  learning  system that  is  determined  not 



only by extrinsic reinforcements but also by 'intrinsic' 
reinforcements  provided  by  unexpected  events.  In 
particular,  we  propose  that  the  activation  of 
dopaminergic neurons by unexpected and novel stimuli 
might  constitute  (part  of)  the  neural  basis  of  what 
psychologists  have  been  called  'intrinsic  motivations' 
(White, 1959; Ryan and Deci, 2000),  i.e. motivations 
that are not related to external rewards but rather to the 
agent's knowledge and/or competence.

Recently, the topic of intrinsic motivations has been 
gaining increasing interest in the robotics and machine 
learning communities  (Schmidhuber,  1991a-b;  Huang 
and Weng, 2002; Kaplan and Oudeyer, 2003; Barto et 
al., 2004; Oudeyer et al., 2007; Schembri et al., 2007a-
c; Lee et al., 2009), but in general this kind of works 
only  consider  computational  issues  (but  see  also 
Kaplan and Oudeyer,  2007).  On the contrary,  in  this 
paper  we  address  the  topic  of  intrinsically-motivated 
cumulative  learning  from  the  point  of  view  of 
biological systems. 

In  order  to  model  biological  cumulative  learning, 
we investigated how a learning system that follows the 
aforementioned biological constraints and that controls 
a simulated arm and an eye might acquire the ability to 
reach  for  objects  on  the  basis  of  the  ability  to 
appropriately look at them. In particular, we compared 
the results of different experiments in which we varied 
the sources of the reinforcement signals and we found 
that the performance in the reaching task was optimized 
when the  reinforcement  signal  included  not  only  the 
extrinsic reinforcement provided by reaching the object 
but also an intrinsic reinforcement given by the error in 
the prediction of the activation of the fovea.

The rest  of  the paper  is  structured as  follows:  in 
section 2 we present the experimental set-up, in section 
3 we show the results and in section 4 we conclude by 
discussing  the  relevance  of  our  results,  in  particular 
with respect to the biological bases of the intrinsically-
motivated cumulative learning of skills.

2. Set up

2.1. The task

The simulated robotic system is composed of an arm 
and an eye working on a two-dimensional plane, and its 
task is to learn and reach for an object randomly placed 
on a table (figure 1).

The arm is composed of two segments (arm and fore-
arm) which are 4.85 and 3.0 units long, respectively; 
each of the two joints (shoulder and elbow) can move 
within the interval [0 180] degrees, within a maximum 
step of 25 degrees in either direction. The object to be 
reached,  which  is  a  circle  with a  diameter  of  0.5,  is 
randomly placed in front of the robot on a rectangular 
table whose dimensions are 4 and 7 respectively, so that 

every point of the table is reachable by the robot's hand. 
The eye of the robot can move on both the x and y axes 
with a maximum step of 8 units in each direction. The 
visual field is a square with a size of 14, so that the eye 
can always perceive the object, even when it foveates 
outside the table.

fc 

Figure 1: The experimental set-up, with the retina, the fovea, 
the arm and the table with the object.

The  sensory  system  of  the  robot  includes  the 
proprioception (the angles of the two joints of the arm) 
and the  visual  perception  of  its  hand and the object. 
Furthermore, the robot has also a rudimentary 'fovea', 
which consists of a single sensor that is activated if (a 
part  of)  the  object  is  perceived  in  the  centre  of  the 
visual field, and a touch sensor, which is activated if 
the hand touches the object (i.e., if it is within the circle 
represented by the object, since for simplicity collisions 
are not simulated and objects are penetrable). The goal 
of the robot is to reach for the object and touch it as 
much  as  possible.  The  robot  is  trained  through  a 
classical reinforcement learning algorithm (Sutton and 
Barto,  1998)  where  a  reinforcement  of  1  is  given 
whenever the hand touches the object.

Since we were interested in the cumulative learning 
of different skills in cases where more complex skills 
depend on simpler ones, we devised the set up so that 
the skill  of reaching crucially depends on the skill  of 
foveating  the  object,  as  it  seems  to  happen  in  the 
development of  human reaching.  In particular,  in  the 
set-up  the  controller  of  the  arm  receives  visual 
information  regarding  the  position  of  the  hand  with 
respect to the eye, but does not receive any information 
regarding the position of  the object.  In this  way,  the 
ability to reach the object can only be developed after 
the eye has learnt to look at the object in a systematic 
way, so that the information regarding the position of 
the hand with respect to the centre of the visual field 
indirectly  provides  information about  the relationship 
between the hand and the object.



As we wanted to test the idea that the cumulative 
learning of skills in biological agents is improved by 
intrinsic motivations,  we confront the learning of our 
system  under  three  conditions,  differing  only  with 
respect to the reinforcement signal that drives learning: 
(A) the one just described, in which the reinforcement 
signal  is  given  only by the  touch  sensor;  (B)  one  in 
which further reinforcement is given also for the sub-
goal  of  foveating  the  object;  (C)  one  in  which  the 
further  reinforcement  consists  in  a  surprise signal 
(prediction  error)  relative  to  the  prediction  of  the 
activation of the foveal input (see section 2.3).

2.2. The controller

Fig.  2  shows the  controller  of  the  system.  As  we 
described in the introduction, we tried to model some 
of the areas and mechanisms (fig. 3) that are involved 
in  the  biological  cumulative  learning  of  actions.  The 
controller  consists  of  two  sub-controllers,  one 
dedicated to the control of the eye (eye-controller) and 
the  other  to  the  control  of  the  arm (arm-controller). 
Both  sub-controllers  are  neural  network 
implementations of the actor-critic architecture (Sutton 
and Barto, 1998) adapted to work with continuous state 
and action spaces (Doya, 2000; Schembri et al., 2007a), 
in discrete time.

For all the inputs to the system we use population 
coding through Gaussian radial basis functions (RBF)
(Pouget and Snyder, 2000):

ai=e

−
d  cd−cid

p

2
d
2 

2

where ai is the activation of input unit i, cd is the 

input value of dimension d, cid
p is the preferred value 

of unit  i with respect to dimension d, and d
2 is the 

standard deviation of the Gaussian along dimension  d 
(standard deviations are parametrized so that when the 
input  is  equidistant  along  a  given  dimension  to  two 
contiguous neurons both their activations are 0.5).

Figure 3: Biological areas related to cumulative learning of 
which we modelled some components

The inputs to the eye-controller are the coordinates 
(x and y) of the object with respect to the centre of the 
visual field, uniformly distributed in a 7 x 7 grid (in the 
range [-7, 7],  i.e.,  there are 49 units whose preferred 
inputs are uniformly distributed in the two-dimensional 

Figure 2 : The controller with its two sub-components (arm and eye controllers), the eye-predictor, and the reinforcement system. α 
and β are the angles of the two arm joints; x' and y' are the distances of the hand with respect to the center of the fovea on the x and y 
axes, respectively; ∆α and ∆β are the variations of angles α and β, respectively, as determined by the arm’s actor; Va is the evaluation 
of arm’s critic; x'' and y'' are the distances of the object with respect to the fovea on the x and y axes, respectively, ∆x and ∆y are the 
displacements of the eye on the x and y axes, respectively, as determined by eye’s actor; Ve is the evaluation of eye’s critic; Pred is 
the prediction of the eye-predictor; f is the activation of the fovea sensor;  t is the activation of the touch sensor;  Rf and Rt are the 
reinforcements related to foveating and to touching the object, respectively; R is the total reinforcement. See text for details. 



space whose origin is the centre of the visual field).

The eye-controller actor has two output units which 
receive connections from all its input units and have a 
sigmoidal activation function:

oi= bi
j

N

a j wij   x= 1

1−e−x

where bi is  the  bias  of  unit  i,  N is  the  number  of 

input units, and wij is the weight of the connection 
linking input unit  j to output unit  i. The eye-controller 
motor commands correspond to the activations of the 
two eye output units plus noise:

 oi
n=oir

where oi
n is the motor command i and r is a random 

value uniformly drawn in [– 0.02, 0.02]. The two eye 
motor commands (in [0, 1]) are then remapped in [–8, 
8] and determine the displacement of the eye in the two 
dimensions (x and y, respectively).

The inputs to the arm-controller  are the angles of 
the  two  arm  joints  α and  β (in  [0,  180])  and  the 
coordinates  x  and  y  of  the  hand with  respect  to  the 
centre  of  the  visual  field  (in  [-7,  7]),  uniformly 
distributed in a 7 x 7 x 7 x 7 grid. The arm-controller 
has two output units that are fully connected with the 
input units and have a sigmoidal activation function as 
the  eye  output  units.  The  arm-controller  motor 
commands correspond to the activations of the two arm 
output units plus random value uniformly drawn in [-
0.2, 0.2]. The two motor commands (in [0, 1]) are then 
remapped in [-25, 25] and determine the displacement 
of the two arm joints (α and β).

Each of the sub-controllers is also endowed with a 
critic,  whose  output  unit  is  a  linear  function  of  the 
respective input units.

In the condition in which learning is driven not only 
by the touch sensor  but also by the system 'surprise' 
with respect to the foveal input, the controller is also 
endowed with a predictor. The input to the predictor is 
another  population  of  RBF  units  that  encode  the 
coordinates of the object with respect to the centre of 
the visual field (in the range of [-7, 7]) and the motor 
commands  determined  by  the  eye-controller  output 
units  (in  [0,  1]),  uniformly  distributed  in  a 
10x10x10x10 grid. The output of the predictor, whose 
task is to predict the activation of the foveal sensor, is a 
single  sigmoidal  unit  fully  connected  with  the  input 
units.

2.3. Learning

Following  biological  constraints,  both  the  sub-
controllers receive the same reinforcement signal (R), 
which is defined as:

R=RtR f

where Rt is the activation of the touch sensor t (1 if 

the hand touches the object, 0 otherwise). R f varies 
according  to  the  three  experimental  conditions:  in 
condition  A (normal)  it  is  always  0;  in  condition  B 
(fovea) it equals the activation of the fovea sensor F (1 
if  the  fovea  perceives  the  object,  0  otherwise);  in 
condition C (surprise) it is defined as max [0, F− p]
where  p is  the  activation  of  the  foveal  predictor's 
output.

Learning depends on the TD reinforcement learning 
algorithm  (Sutton  and  Barto,  1998).  For  each  sub-
controller k, the TD error 

k is calculated as usual:

k=Rtk V k
t −V k

t−1

where V i
t is the output of the critic of controller k at 

time step  t and 
k is the discount factor, set to 0.9 

for both the eye and the arm controllers. The weights of 
the critic k are updated in the standard way:

wi=k
c k a i

where k
c is the learning rate, set to 0.01 for both the 

eye and the arm controllers.

The weights of the actor k are updated as follows:

w
ij
=

k
a

k
a

ij oi
n−o

id oi 
where k

a is the learning rate (set to 0.1  for both the 

eye  and  the  arm  controller),  and d x  is  the 
derivative of the sigmoid function, that is x 1−x  

The learning of the predictor is supervised, with the 
actual activation of the fovea sensor (at time step t+1) 
acting as the teaching input for the prediction (at time 
t). The change in the weights is performed according to 
the standard delta rule:

wi= p a iF− pd  p

where 
p is the learning rate, set to 0.01, ai is the 

activation of  input  i, F is the  activation of the fovea 
sensor (at t+1) and p is the activation of the predictor's 
output (at t).



3. Results

Each experiment was run for 150000 trials, with each 
trial lasting 40 time steps, after which the object, the 
eye,  and  the  arm  were  repositioned  randomly.  The 
object and the eye were always repositioned inside the 
table, while arm’s joint angles were set randomly (in [0, 
180]), so that the hand could be outside the table. Every 
100 trials we performed 100 test trials (during which 
learning is switched off), in which we recorded several 
data. For each condition we ran five replications of the 
experiment: all the presented data are average results of 
the five replications.

Fig. 4 shows the performance on the reaching task 
in  the  three  experimental  conditions.  In  the  first 
condition,  the  arm  increased  its  performance  quite 
soon,  but  reached  only  sub-optimal  values.  In  the 
second condition, where the reinforcement for the sub-
task of foveation was introduced, the results got worse: 
although  the  system  obtained  the  same  sub-optimal 
performance as condition A, it took more trials to reach 
those values. In condition C, where the reinforcement 
related  to  foveation  is  a  prediction  error  signal,  the 
learning  of  the  reaching  ability  speeded-up,  and 
reached optimal performance (100%) after about 40000 
trials.

Figure  4:  Average  number  of  test  trials  in  which  the  arm 
reaches the object (at least once) under the three conditions. 
A:  normal  condition;  B:  fovea  condition;  C:  surprise 
condition. See text for details

Let  us  now consider  the  three  conditions  more  in 
detail.  In  fig.  5  the  performance  of  the  system with 
respect  to  the  sub-task  of  foveation  is  shown.  In 
condition A, where the sub-task of foveation was not 
reinforced, the eye did not learn to foveate the object. 
Nonetheless, its behaviour was such that the arm could 
learn its  task:  the behaviour of  the eye was to move 
always to a specific position with respect to the object, 
thus  providing  to  the  arm  a  constant  input  that 
indirectly brings the information on the position of the 
object, that is required for learning to reach (Data not 
shown). 

In condition B an explicit reinforcement for the sub-
task  of  foveation  was  introduced.  Although  the  eye 
very rapidly reached high performance in its task, the 
system  ability  in  reaching  for  the  object  did  not 
improve compared to condition A; rather the learning 
process  was  slowed  down.  This  is  because  the  new 
reinforcement signal interfered with the learning of the 
final  task.  As  described  in  section  2.3,  the 
reinforcement is composed by the sum of the signals 
coming  from  the  fovea  and  the  touch  sensors;  so, 
because the eye has learnt its task very quickly (after 
only 5000 trials it reaches 100% performance value), 
the  learning  of  the  final  task  was  impaired  by  the 
frequent  reinforcement  signal  coming  from  the  eye 
foveating  the  object.  The  critic  of  the  arm  has  no 
information to predict the reinforcement signal coming 
from the eye activity:  as we said in the introduction, 
this  is  a  typical  non-Markovian  problem,  while  the 
actor-critic  reinforcement  learning  architecture  was 
developed  to  solve  Markovian  problems.  Moreover, 
despite the reaching for the object provided an increase 
in the reinforcement signal, this was not sufficient to 
rapidly drive the learning of the arm: in fact in a world 
where there is a frequent signal coming from the eye, 
the information carried by the reinforcement provided 
by the arm is lowered.

Figure  5: Average  number  of  test  trials  in  which  the  eye 
foveates the object (at least once) under the three conditions. 
A:  normal  condition;  B:  fovea  condition;  C:  surprise 
condition. See text for details.

In  condition  C,  the  reinforcement  for  the  eye 
reaching the object  was determined by the prediction 
error (surprise) of the fovea activation, determined by 
the activity of the predictor. As shown in fig. 5, also in 
this condition the eye very quickly learnt to foveate the 
object, at least once per trail.  Fig. 6 shows that also the 
average number of steps in which the eye foveated the 
object raised very quickly. The learning of the predictor 
followed the learning of  the eye-controller:  when the 
eye  started to  foveate  the  object  with continuity,  the 
prediction  error  increased  a  little  but  as  soon as  the 
ability of the eye improved the predictor reliably learnt 
to  predict  the  activation  of  the  fovea sensor  and  the 
prediction  error  decreased  again.  As  a  consequence, 



after about 20000 trials, the reinforcement provided by 
the fovea prediction error (Rf, fig. 6), which drove the 
learning so far, had lowered again to chance value. At 
this time the arm was still not able to reach the object 
with satisfying continuity, so the total reinforcement R 
lowered as well. However, the reliable behaviour of the 
eye  permitted  the  arm to  start  learning  to  reach  the 
object: the reinforcement coming from the touch sensor 
(Rt,  fig.  6) and the global reinforcement  R increased 
and  soon  the  system  reached  an  almost  optimal 
performance  (fig.  4).  Note  that  during  the  period  in 
which reaching was learnt, the average time spent by 
the eye foveating the object kept increasing (from about 
0.85  to  about  0.95),  while  the  reinforcement  coming 
from the fovea prediction error was very low: hence, 
the further improvement of the foveating ability might 
have been driven not only by the reinforcement relative 
to  the  activation  of  the  fovea  but  also  from the one 
provided by the touch sensor.

Figure  6:  Several  data  of  condition  C:  total  reinforcement 
(R),  fovea  reinforcement  (Rf),  touch  reinforcement  (Rt), 
prediction  error  (Pred  Err)  of  the  predictor  of  fovea 
activation,  and  percentage  of  time-steps  in  which  the  eye 
foveates the object (Eye Fov).

4. Discussion and future works

In this work we presented a simulated robotic system 
that acquires the capacity to reach for an object after 
having learnt to systematically look at it, as required by 
the fact  that  the former ability depends on the latter. 
Biological  considerations  drove  the  design  of  the 
learning  system,  which  was  based  on  the  following 
assumptions:  (1)  actions  are  learnt  through  a 
reinforcement learning process that takes place in the 
basal  ganglia  (Doya,  2000;  Graybiel,  2005);  (2)  the 
dorsal  regions  of  the  basal  ganglia  implement  actor-
critic reinforcement learning architectures (Barto, 1995; 
Joel et al. 2002; Daw et al. 2005); (3) learning is driven 
by  the  TD  learning  algorithm,  with  the  phasic 
activation of the neuromodulator dopamine playing the 
role  of  the  learning  signal  (Reynolds  and  Wickens, 
2002) in analogy with the TD error (Houk et al., 1995; 
Schultz  et  al.  1997;  Schultz,  2002);  (4)  different 
effectors (e.g. eye and hand) are controlled by different 
controllers (Romanelli et al., 2005); (5) there is a single 

reinforcement signal for the different controllers.

We  compared  the  results  of  three  experiments  in 
which  we  varied  the  sources  of  reinforcement.  The 
system was able to develop the reaching ability when 
only  the  touching  of  the  object  was  reinforced 
(condition  A)  but  performance  was  sub-optimal 
because of the complexity due to the dependency of the 
behaviour of the arm on the one of the eye. Adding an 
explicit reinforcement for the sub-task of foveating the 
object (condition B) gave no improvement in the final 
performance of the system while in fact slowing down 
the learning process.  The reason  is  that  although the 
additional  reinforcement  drove  the  acquisition  of  the 
ability of looking at  the object,  it  interfered with the 
learning  of  the  reaching  task  by  providing  irrelevant 
and unpredictable learning signals to the arm controller. 
The  best  results  were  obtained  in  the  experiment  in 
which  the  further  reinforcement  consisted  in  the 
'unpredicted' activation of the fovea (condition C). The 
reason is that such an intrinsic reinforcement signal is 
well  suited for  driving cumulative  learning  processes 
because it  is present only when the intermediate skill 
has still to be acquired but fades away as soon as that 
ability has been learnt. In our model, for example, as 
soon  as  the  skill  to  foveate  had  been  learnt,  the 
predictor learnt  to  predict  the activation of  the fovea 
sensor and started inhibiting the intrinsic reinforcement 
signal so that the system could focus on learning  the 
reaching  task  on  the  basis  of  the  reinforcement 
provided  by  touching  the  object,  without  the 
interference of the reinforcement coming from the eye 
activity.

Our  model  can  explain  the  otherwise  puzzling 
neuroscientific evidence showing that dopamine is not 
only activated by biological rewards such as food, but 
also by other salient events like lights, tones and other 
novel or unexpected events (Horvitz, 2000, Dommett et 
al.,  2005;  Lisman  and  Grace,  2005).  Furthermore, 
behavioural  experiments  have  shown  that  apparently 
neutral  stimuli  like  a  light  can  be  used  for  training 
animals  to  perform  certain  actions  in  instrumental 
conditioning tasks (Reed et al., 1996; see also Fiore et 
al.,  2008 for  a model  that  reproduces these data).  In 
order  to  explain  these  and  other  evidence  that 
contrasted  with  the  interpretation  of  dopamine  as 
reward prediction error (Schultz, 2002), Redgrave and 
Gurney (2006) proposed that phasic dopamine is in fact 
an  intrinsic  learning  signal  that  allows  the  discovery 
and development of novel actions. The model presented 
in  this  paper  can  be  considered  as  lying  in  between 
these two opponent  views of  phasic dopamine. From 
the one hand, our model assumes that dopamine is in 
fact a form of reinforcement prediction error, playing 
the  role  of  the  TD  signal  in  computational 
reinforcement learning; on the other,  we also assume 
that  a  fundamental  role  of  the dopamine signal  is  to 
drive the acquisition of new actions (skills) on the basis 



of the occurrence of unexpected events. In particular, 
our  model  has  shown  how  intrinsic  reinforcements 
provided  by  unexpected  events  can  lead  to  the 
acquisition of new skills, which in turn can be used for 
learning other abilities in a cumulative fashion.

In  the  computational  literature  on  intrinsically-
motivated learning, the idea of using a prediction error 
as an intrinsic reinforcement has been first proposed by 
Schmidhuber  (1991a)  and  used  in  other  subsequent 
models  (e.g.  Huang  and  Weng,  2004).  However, 
Schmidhuber (1991b) argued that a prediction error is 
not  a  good  intrinsic  reinforcement  signal  as  it  can 
generate problems if the environment is unpredictable: 
in  such  a  case,  the  reinforcement  provided  by  the 
prediction error would never decrease and the system 
would get  stuck  in  trying to  reproduce  unpredictable 
outcomes.  To  avoid  this  problem,  the  use  of  the 
progress  in  the  predictions was proposed as  a  better 
intrinsic  reinforcement,  a  solution  that  has  been 
adopted  in  developmental  robotic  systems  (e.g. 
Oudeyer et al., 2007). In contrast to this, in our model, 
as  in  biological  systems,  the  intrinsic  reinforcement 
signals  that  drive  action  learning  depend  on 
unpredicted events, not on progress in predictions. 

How  can  we  reconcile  this  with  the  problem  of 
unpredictable  events?  We  think  that  the  problem  of 
unpredictability might be solved (in real as well as in 
artificial  systems)  by  further  intrinsic  motivation 
signals that work not at the level of the single skills, but 
at  a  higher  level  of  the  hierarchical  organization  of 
action, a level that is in charge of deciding which is the 
skill  that has to be trained in each context. If  such a 
level is trained on the basis of intrinsic rewards related 
to  the  learning  progress  in  skill  acquisition,  as  it 
happens  in  the  work  of  Schembri  et  al.  (2007a,b,c), 
then unpredictable events would not lead the system to 
get stuck in trying to reproduce them: if a skill cannot 
be learnt,  the learning progress will  be zero,  and the 
system will move on and try to learn something else.

In future work, we plan to investigate this hypothesis 
by merging the use of  unexpected events as  intrinsic 
reinforcements for skill acquisition (as in the model of 
this  paper)  with  the  use  of  a  hierarchical  system in 
which  intrinsic  rewards  are  based  on  a  measure  of 
progress  in  skill  acquisition  (as  in  the  models  of 
Schembri et al., 2007b). We plan to test such a more 
complex system in a richer world, for example in which 
more than one object can be present and more complex 
sequences of skills can be performed. The goal of this 
future research is to investigate whether such a richer 
system in a richer environment can cumulatively learn 
a  higher  number  of  skills  on  the  basis  of  intrinsic 
motivation signals.
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