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The  paper  describes  a  neural  network  model  of  early  language  acquisition  with  an 
emphasis  on how language positively  influences the  categories  with which the  child 
categorizes  reality.  Language  begins  when  the  two  separate  networks  that  are 
responsible for nonlinguistic sensory-motor mappings and for recognizing and repeating  
linguistic  sounds become connected together at 1 year of age. Language makes more  
similar the internal representations of different inputs that must be responded to with the 
same  action  and  more  different  the  internal  representations  of  inputs  that  must  be 
responded to with different actions.

1. Introduction

Understanding the relationship between language and cognition is one of the 
most difficult and important challenges facing cognitive science. Language has 
not only a communicative (social)  function,  but also a cognitive (individual) 
function (Vygotsky 1962, Jackendoff 1996, Clark 1998, Carruthers 2002). The 
view  of  language  as  something  that  transforms  all  human  psychological 
processes dates back as early as the 1930s, with the work of Russian scholar Lev 
Vygotsky (1962,  1978),  but  it  is  a  view which has been  rather  neglected  in 
mainstream  cognitive  science.  Nonetheless,  the  idea  has  not  completely 
disappeared and recently has been raising increasing interest  in philosophy and 
cognitive science (Carruthers & Boucher, 1998; Gentner & Goldwin-Meadow, 
2003). Indeed, in recent years, language has been proposed to have an influence 
on,  and  to  improve,  many  human  psychological  functions,  among  them 
categorization  (Clark,  1998;  Gentner,  2003),  learning  (Waxman  &  Markov, 
1995;  Nazzi  &  Gopnik,  2001),  selective  attention  (Jackendoff,  1996;  Clark, 
1998),  memory  (Gruber  & Goschke,  2004),  voluntary  control  (Diaz  & Berk 
1992), perspective taking (Tomasello, 2003), analogy making (Gentner 2003), 
and  reflexive  thinking  (Dennett  1991,  1996;  Carruthers  2003).  This  paper 
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describes some very simple neural network simulations that (a) model the very 
earliest stages of language acquisition and (b) investigate the effects of language 
on categorization.

During her  first year of life, the child learns to control her movements, to 
make  appropriate  sensory-motor  mappings,  to  categorize  perceptual 
experiences, and to reproduce her own sounds and the linguistic sounds of her 
environment.  Notwithstanding  all  these  progresses,  this  phase  of  child 
development  is  called  ‘pre-linguistic’  because  in  her  first  10-12  months  the 
child does not show any strictly linguistic competence, that is, she is able neither 
to understand nor to meaningfully produce words. It is only around the end of 
her  first  year  that  the child  learns  to connect  the linguistic  sounds that  have 
become familiar to her  with their meanings as indicated by the fact  that she 
reacts correctly to linguistic stimuli and she produces words in the appropriate 
circumstances.

Language  acquisition  can  be  considered  to  involve  three  sub-tasks(Kit, 
2002):  the  acquisition  of  linguistic  forms,  the  acquisition  of  non-linguistic 
sensory-motor  mappings,  and  the  association  between  linguistic  forms  and 
specific sensory-motor mappings, which become the meanings of the linguistic 
forms. Behavioral  evidence  (Bloom,  1994)  suggests  that  the  acquisition  of 
linguistic  forms  and  the  acquisition  of  sensory-motor  mappings  run  quite 
independently until the end of the first year and that only after the child has 
acquired  a  certain  ability  to  map  sensory  inputs  into  motor  outputs  and  to 
categorize  experiences,  on one side,  and  to recognize  and  produce  linguistic 
forms, on the other side, the third task, the association of linguistic forms with 
specific sensory-motor mappings, can begin.  The model of language learning 
presented here is based on this kind of behavioral evidence.

2. Method

2.1.  The neural network and the environment

The neural network used in our simulations is modular. It is constituted by two 
sub-networks  with  three  layer  each,  which  we  call  the  sensory-motor  sub-
network  and  the  linguistic  sub-network.  The  hidden  layers  of  the  two  sub-
networks are reciprocally connected by two matrices of connection weights so 
that  the  linguistic  and  the  sensory-motor  systems can  interact  with  the  each 
other (figure 1).

The  sensory-motor  sub-network  has  16  bipolar  input  units  (each  unit’s 
activation  can  be  either  1  or  –1)  which  encode  the  properties  of  perceived 
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objects, 2 hidden units (with continuous activation in the interval [–1; 1]), and 2  
output units which encode the action performed by the network in response to 
each object. The activation of the two output units is thresholded to be either 1  
or – 1, so that there are only four possible ‘actions’: <-1; -1>, <-1; 1>, <1; -1>,  
<1;  1>.  The network’s  environment  consists  of  480  objects,  belonging  to  4 
categories of 120 exemplars each. There are four prototype vectors, one for each 
categorya, and the perceptual properties of objects are generated by flipping 4 

bites of the prototype to which the object belongs.
Figure 1. The neural network.

The linguistic sub-network has 2 input units encoding incoming linguistic 
signals, 2 hidden units, and 2 output units which represent emitted sounds. All  
the  units  of  the  linguistic  sub-network  have  continuous  activations  in  the 
interval [– 1; 1]. The linguistic environment is constituted by 4 words, which 
can be interpreted as the names of the four kinds of objects or of the appropriate 
actions to be performed upon them. Since words are pronounced in different 
ways by different persons and by the same person at different times, the acoustic 
inputs are created by changing slightly 4 prototype vectors, one for each word 
(<-0.5; -0.5>, <-0.5; 0.5>, <0.5; -0.5>, <0.5; 0.5>). There are 120 instances of 
each  word  and  each  instance  is  produced  by  changing  both  values  of  the 

a  The prototype vectors are: <-1; -1; -1; -1; -1; -1; -1; -1; 1; 1; 1; 1; 1; 1; 1; 1>; 
<-1; -1; -1; -1; 1; 1; 1; 1; -1; -1; -1; -1; 1; 1; 1; 1>; <-1; -1; 1; 1; -1; -1; 1; 1; -1; 
-1; 1; 1; -1; -1; 1; 1> and <-1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1>

3

 
Visual input

S-M
hidden

Motor output 
(actions)

Linguistic input

L
hidden

Linguistic output 
(words)

S
e
n
s
o
r
i
m
o
t
o
r

N
e
t

L
i
n
g
u
i
s
t
i
c

N
e
t

Visual input

S-M
hidden

Motor output 
(actions)

Linguistic input

L
hidden

Linguistic output 
(words)

S
e
n
s
o
r
i
m
o
t
o
r

N
e
t

L
i
n
g
u
i
s
t
i
c

N
e
t



corresponding prototype vector by a amount randomly chosen in the range [–
0.25; 0.25] .

2.2. The two stages of learning

The entire network goes through two successive stages of learning which are 
meant to correspond approximately to child’s learning from birth to 1 year and 
to her learning from 1 year on, respectively. In the first stage of learning the two  
sub-networks are trained independently to accomplish two different tasks. The 
sensory-motor network learns to categorize objects and the linguistic network 
learns to repeat or imitate words. At the end of this first stage the connections  
between the hidden layers of the two sub-networks become functional and in the 
second  stage  of  learning  the  network  learns  to  associate  words  with  the 
categories of objects to which they refer.  

At the beginning the network is initialised with random connection weights 
in the range [-0.5; 0.5]. Then, 1000 cycles of backpropagation learning (with a 
learning rate of 0.2) are run in the following way. For the sensory-motor sub-
network,  one  of  the 480 different  objects  is  randomly chosen,  its  perceptual 
properties  are  encoded  in the input  units  of  the sensory-motor  network,  the 
response of the network is calculated, and the correct action is provided to the 
network as teaching input (correct responses are <-1; -1>, <-1; 1>, <1; -1> and 
<1; 1> for objects belonging to category A, B, C and D, respectively). For the 
linguistic sub-network, one of the 480 possible instances of words is randomly 
chosen and  encoded in the linguistic  input units,  the sound produced by the 
linguistic network in response to this heard sound is calculated, and the same 
sound heard as input is given as teaching input (in other words, the linguistic 
network has to accomplish an autoassociative task).

During  this  first  stage  of  learning,  the  connections  that  link  the  hidden 
layers of the two sub-networks are non-functional. After 1000 cycles of back-
propagation learning, the inter-network connections become functional and in 
the second stage  of  learning  their  weights  are  modified  so that  the  network 
learns  to  associate  the  internal  representations  of  objects  (the  vectors  of  
activation of the sensory-motor hidden layer) with the internal representations of 
the appropriate words (the vectors of activation of the linguistic hidden layer),  
and vice versa. This second phase of learning runs as follow. One of the 480  
objects is chosen randomly, together with one of the 120 instantiations of the 
word that designates the category to which the object belongs. The object and 
the word are given as input to the sensory-motor network and to the linguistic 
network, respectively. Then, the vectors of activation of the two hidden layers 
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are calculated and two cycles of the delta rule learning algorithm are applied by  
considering the two hidden layers with the connection weights in between them 
as two distinct perceptrons: one perceptron has the sensory-motor hidden layer 
has its input layer and the linguistic hidden layer as its output layer,  and the 
other  perceptron  has  the  linguistic  hidden  layer  as  its  input  layer  and  the 
sensory-motor hidden layer as its output layer. The delta rule is applied by using 
the vector of activation observed in the linguistic hidden layer as teaching input  
for  the first perceptron and the vector  of activation observed in the sensory-
motor hidden layer as teaching input for the second perceptron. The procedure, 
like that of the first stage of learning, is applied 1000 times with a learning rate  
of 0.2.

3. Results

We have run two kind of tests, behavioral tests and internal representations tests. 
The  behavioral  tests  have  the  function  of  assessing  the  performance  of  the 
network, while with the internal representation tests we analyse the effects of 
language on the categorization abilities of the network.

3.1. Behavioral tests

There are 4 behavioral  tests: categorization,  linguistic imitation, naming,  and 
comprehension. In the categorization test the sensory-motor network is given an 
object as input and its performance is calculated as the difference between its 
action response and the right one (according to the object’s category).  In the 
linguistic imitation test the linguistic network is given the instantiation of a word 
as input and performance is how much the network is able to reproduce the 
heard sound in its sound output. In the naming test we give the network one of  
the 480 objects as input, activation spreads to the sensory-motor hidden units, 
then to the linguistic hidden units, and finally to the linguistic output units. We 
calculate the network’s performance with respect to the vector prototype of the 
word that designates the category of the perceived object. The comprehension 
test  is  symmetrical  to  the naming one.  In  this  test,  we give  the network  an 
instantiation of a word as input and let the activation spread from the linguistic 
input units to the linguistic hidden units, then to the sensory-motor hidden units 
and,  finally  to  the  motor  output  units  of  the  sensory-motor  networks.  The 
network’s  performance  is  calculated  with  respect  to  the  response  that  is 
appropriate to the meaning of the word, that is, to the action to be produced in 
response to objects of the category to which the heard word refers.

All the behavioral tests are conducted three times: at the beginning of the 
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simulation (cycle 0), at the end of the first stage of learning (cycle 1000), and at 
the end of the second stage (cycle 2000). Figure 2a reports the percentage of 
errors in the four behavioral tests averaged on all the 480 inputs (objects in the 
categorization  and  naming  tests  and  instances  of  words  in  the  linguistic 
imitation and comprehension tests)b.  The network learns  both to perform the 
correct  action  in  response to  a  perceived  object  and  to imitate the linguistic  
sounds it hears: for both tasks the percentage of error decreases from around the 
75% at the beginning of the simulation to 0%, that is, no error at all, at the end  
of  the  first  stage  of  learning.  Even  the  second  stage  of  learning  is  very 
successful:  while  at  the  end  of  the first  stage of  learning  the network  gives 

wrong responses almost 90% of the time in the naming test and around 70% of  
the time in the comprehension test, at the end of the second stage the network 
has acquired  a perfect  linguistic  competence  in  that  it  always names objects 
correctly and responds appropriately to all the linguistic signals present in its 
environment.
Figure 2.  (a):  Percentage  of errors in  the  categorization  (left),  linguistic  imitation  (middle-left),  
naming (middle-right) and comprehension (right) tests with random weights (0) and after the first  
(1000) and the second stage of learning (2000). (b): Average clouds’ dimension before learning 
(left) and after learning in the ‘vision’ (middle),  and ‘language’ (right) conditions.  (c): Average 
distance  between  clouds  before  learning  (left)  and  after  learning  in  the  ‘vision’  (middle),  and 
‘language’ (right) conditions. See text for details.

3.2. Internal representations tests

Given  the  perceptual  properties  of  an  object  as  input,  we  can  look  at  the 
activation vector of the two sensory-motor hidden units (in the range [-1; 1])  
and consider this activation vector as the network’s internal representation of 
that object. Therefore, the internal representation of an object can be viewed as 
a  point  in  a  bi-dimensional  space,  with  each  dimension  of  the  space 

b  All the results are averaged over 10 replication of the simulation with 
different initial conditions (random connection weights).
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corresponding  to  the  activation  state  of  one  hidden  node;  consequently,  the 
internal representation of one category of objects is the “cloud” of points which 
represent  all  the  objects  belonging  to  that  category  (see  figure  3).  A  good 
categorization is one in which (1) objects belonging to the same category are 
represented similarly, that is, the size of their cloud is small, and (2) objects  
belonging to different categories are represented differently, that is, the different 
clouds are distant from each other. So, for assessing goodness of categorization 
we use two measures: (1) cloud size, calculated as the average distance between 
all the points belonging to a cloud and the cloud’s geometric center, averaged 
over the four clouds, and (2) distance between clouds, calculated as the average  
distance between the centers of the four clouds. We analyse the categorization 
performance  of  the  trained  neural  network  in  two  conditions:  ‘vision’  and 
‘language’.

The vision condition corresponds to the situation described above, in which 
the clouds are the network’s internal representations given the objects as visual 
input. In the language condition the network perceives the objects together with 

their  names  (random  instances  of  the  four  words  corresponding  to  the  four 
categories). In this condition we present both kinds of input, then we calculate 
the linguistic  hidden  unit  activations given  the  linguistic  input,  and  then  we 
measure the sensory-motor hidden unit activations given both the visual input 
and the activation arriving from the linguistic hidden units. 
Figure 3. Network’s internal representations (clouds) before learning (a) and after learning in the  
vision (b) and language (c) conditions. See text for details.

Figure 3 shows the internal representations of objects before learning (a), 
and after learning in the vision (b) and language conditions (c). While before 
learning  the four  clouds are  big and highly  overlapping  and so the network 
cannot discriminate between different kinds of objects (fig. 3a), after learning 
objects’  categories  are  clearly  distinguished  in  that  each  class  of  objects 
occupies one of the four corners of the network’s representational  space (fig. 
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3b). In other words, during training the network has learnt to categorize objects 
by decreasing the average size of the clouds (fig. 2b, left and middle bars) and 
by increasing the average distance between the clouds (fig 2c, left and middle 
bars).  This is just  another  example of  the well-known categorical  perception 
effect (Harnad et al.1995). What is more interesting is the effect that language 
has upon categorization: as you can see comparing the internal representations 
in the vision (fig. 3b) and the language (fig.  3c) conditions, categorization is 
consistently facilitated when objects are perceived together with their ‘names’.  
In fact, the four clouds are both significantly smaller (fig. 2b middle and right 
bars) and more distant from each other (fig. 2c middle and right bars).

4. Discussion and conclusions

We have described a neural network model of early language acquisition. The 
model  assumes  that  during  her  first  year  of  life  the  child  separately  learns 
various sensory-motor mappings (reaching, manipulating, categorizing objects) 
and  various  sound-related  abilities  (recognizing  sounds,  repeating  her  own 
sounds and the sounds produced by others). It is only at the end of the first year  
that language learning begins. The two separate networks that are responsible,  
respectively, for the sensory-motor mappings and for the sound-related abilities 
become functionally connected and language learning consists in learning the 
connection weights linking the two networks. These weights allow the child to 
produce  linguistic  sounds  in  the  appropriate  circumstances  and  to  react 
appropriately to the linguistic sounds produced by other individuals.

But language also changes the way in which the child categorizes reality.  
Input-output  mappings  require  categorization.  Categorization  is  to  make  the 
internal representations (patterns of activation in the network’s internal units) of 
different inputs more similar if the different inputs must be responded to with  
the same action, and more different  if the inputs must be responded to with 
different  actions  (Di  Ferdinando  &  Parisi  2004).  All  organisms  categorize 
reality. And infants categorize reality during their first year in order to generate 
the appropriate input/output mappings. But our model shows that language can 
influence cognition by inducing better categorization of non-linguistic inputs.

Our model can also be considered as a general model of the integration of 
multiple  sensory-motor  mappings  in  the  brain.  Much  activity  in  the  brain 
consists  in  exploiting  the  co-variations  observed  in  experience  to  establish 
correlations between different  sensory-motor  mappings.  For example,  visual-
motor  mappings  are  correlated  with  proprioceptive-motor  and  tactile-motor 
mappings in such a way that given one type of input the brain can predict the 
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other  one.  Language is but  one  example  of  this  type of  integration  between 
various non-linguistic sensory-motor mappings and the sensory-motor mapping 
from heard sound to pronounced sounds. Given a visual input from an object, 
the  brain  generates  the  internal  representation  of  the  word  (sound)  that 
designates the object. Or, given a word (sound), the brain generates the internal 
representation of the visually or haptically perceived object designated by the 
word.

However, language is somewhat different from other types of integration 
between different  sensory-motor mappings.  While other  correlations between 
different sensory-motor mappings are not arbitrary, language is arbitrary - and 
this  may  require  a  species-specific  genetically  inherited  basis  for  language 
learning. Given a visual input from a new object, the brain can predict how the 
visually perceived object would feel if touched. In contrast, given a new object 
the brain cannot predict what is the word that designates the object or, given a 
new word,  the brain cannot  predict  which object  is designated by the word. 
Furthermore,  variations in how the same word is pronounced do not  predict 
variations in the object designated by the word. Another important difference 
between  language  and  other  types  of  integration  between  different  sensory-
motor mappings is that the overall space of variation of heard or pronounced  
linguistic signals appears to be much smaller than the space of variation of the 
objects  or  actions  that  are  designated  by  the  linguistic  signals.  This  is 
particularly  important  for  categorization  because  it  might  contribute  to 
explaining why language makes our sensory-motor categories more distinctive 
and  more  compact.  Finally,  language  may be  different  because  the  sensory-
motor mapping from heard to pronounced words can easily become a circular or 
closed circuit. When one sees an object, the visual input from the object does 
not  only generate  the internal  representation  of  the word that  designates  the 
object but it can generate the actual sound of the word through private or inner  
speech.

In fact, unlike animal communication systems, human language is not only 
used to communicate with other individuals but it is also used to communicate  
with oneself, either externally (private speech) or internally (inner speech). In 
the simulations described in the paper, the language which arrives to the neural 
network is produced by another individual. We intend to further explore how 
language influences categorization  by  applying  our  neural  network  model  to 
private speech and inner speech, trying to answer the following question: How 
an individual categorizes reality when he or she is exposed to reality and at the 
same time to language  stimuli  that  the  individual  him-  or  herself  generates, 
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either externally or internally?
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