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1. Introduction 

1.1 The problem  

Language requires the co-evolution of both speakers and hearers. i.e., the co-evolution of both the 
ability to emit signals that systematically co-vary with specific features of the external or internal 
environment (language production) and the ability to respond appropriately to these signals 
(language understanding). If speakers do not produce the appropriate signals in the appropriate 
circumstances, there are no useful signals for hearers to understand. If hearers do not respond 
appropriately to the signals produced by the speakers, speakers emitting the appropriate signals are 
useless. The evolution of both speakers and hearers requires that language must be advantageous to 
both. Why should speakers evolve an ability to produce signals that appropriately co-vary with 
specific features of the environment if this does not involve any advantages for them? Why should 
hearers develop an ability to respond appropriately to the heard signals if this ability does not 
increase their survival and reproductive chances? 

In fact, using computer simulations we will show that, in a situation in which language1 is 
advantageous for hearers but not for speakers, a stable and useful language fails to emerge in groups 
of genetically unrelated individuals, i.e., if the speaker and the hearer do not have the same or 
similar genes. Of course, there are other uses of language in which both the speaker and the hearer 
get benefits from, respectively, producing and understanding linguistic signals. And in these 
circumstances language can emerge even in groups of genetically unrelated individuals. One 
example is a speaker informing a group of genetically unrelated hearers about the presence of some 
prey that can only be captured by group hunting. In this context language can emerge because both 
the speaker and the hearer(s) receive some advantage (capturing the prey) by, respectively, 
producing the appropriate signals and responding appropriately to the signals. 

However, our simulations will show that in at least three conditions language can emerge even if 
it confers an advantage only to hearers but not to speakers. The first condition is that the speaker 
and the hearer share the same or similar genes. In these circumstances language emerges because 
                                                 
1 The computational model presented in this paper is very simple and the ‘language’ we are dealing with is a very 
simple communication system whose signals have no internal structure and no syntax. Nevertheless, we will refer to our 
signalling system indifferently as a ‘communication system’ and as a ‘language’. This is because the problem we are 
dealing with here (namely the evolution of good speakers when there is no selective advantage for them) is relevant for 
any kind of communication system used for informing other individuals about the environment, including human 
language which is particularly sophisticated in this respect. Furthermore, two of the solutions we will find for evolving 
this kind of communication system (see the ‘docility’ and the ‘talking-to-oneself’ simulations, §§ 3.3 and 3.4) are based 
on two characteristics which are specific of human language: (a) it is a culturally transmitted and culturally evolved 
system, and (b) it is used to communicate with oneself and not only with others. 
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the altruistic genes of the speaker are maintained in the population through the advantages conferred 
by the linguistic behavior of speakers to hearers that possess the same (or similar) genes. In other 
words, language can emerge in kin-related groups as a result of kin selection (Hamilton 1964).  

A second condition in which language emerges even if it is advantageous only to the hearer is a 
condition in which language is culturally rather biologically transmitted. If what the organisms 
inherit genetically is not the language itself but only the propensity to learn the language, then this 
propensity - which, following Simon 1990, we call ‘docility’ - can be the basis for learning the 
language from individuals that already know the language, and this irrespective of whether in any 
particular context of use language confers an advantage to the speaker or to the hearer.  

A third condition for the emergence of a language which is useful only for the hearer exploits 
another peculiar characteristic of human language. Unlike animal communication systems, human 
language is used not only for social communication, i.e., when the speaker and the hearer are two 
different individuals, but also for talking to oneself, that is, when the speaker and the hearer are the 
same individual. This kind of individual use of language constitutes between 20% and 60% of the 
language produced by three to ten year old children (Berk 1994) and there is evidence that in adult 
life this private speech is internalized and becomes inner speech (Vygotsky 1962; Diaz and Berk 
1992). This use of language for oneself may have been present in the very early evolutionary stages 
of language and it may have represented an evolutionary pressure for the biological, not cultural, 
emergence of language. We will show that a useful shared language can biologically evolve in 
groups of genetically unrelated individuals if language is used as a memory aid, i.e., to allow an 
individual to keep in memory some useful piece of information which has been communicated by 
another individual.  

1.2 State of the art 

The study of the evolution of communication and language using computational models is a very 
lively and fascinating field. (For a recent and comprehensive review of the field, see Wagner et al. 
2003; see also the articles in Cangelosi and Parisi 2002). Indeed, it can be argued that much of the 
renewed scientific interest in theories of language evolution and origin (Christiansen & Kirby 2003) 
is due to the introduction of formal and computational methods in the field. 

Various models have been described for studying the emergence of both simple, non-syntactic 
communication systems (Hutchins and Hazlehurst 1995, Di Paolo 1998, Hurford 1999, Billard and 
Dautenhann 1999, Steels and Kaplan 2002) and more complex, compositional ones (Batali 1998, 
Hazlehurst and Hutchins 1998, Steels 1998, Kirby 2000, Cangelosi 2001, Cangelosi and Parisi 
2001). Most of these models focus on the mechanisms that can sustain the emergence of a good 
communication system and adopt means for assuring such an emergence. Evolutionary models tend 
to directly include communication success in the fitness function of the individual, while learning 
models tend to introduce learning mechanisms (such as reinforcement) that force the system 
towards the emergence of a shared communication system. 

Only a few computational and formal models have directly tackled the issue which is of interest 
here, that is, the adaptive factors that can lead to the emergence of a communication system which 
is advantageous only for the hearer, but not for the speaker. Ackley and Littman 1994 and Oliphant 
1996 have shown that this kind of communication system does not evolve under ‘normal’ 
conditions because of its altruistic character. Only if the population is spatialized, then a 
communication system can evolve even if there is no advantage for the speaker. Both Ackley and 
Littman and Oliphant argue that in spatialized populations communicating organisms will tend to be 
kin-related so that altruistic genes can emerge because altruistic agents will tend to benefit other 
altruistic agents. Di Paolo 1999 has criticized this interpretation by formally analysing kin 
relatedness in a model similar to that used by Ackley and Littman 1994 and Oliphant 1996, and he 



has shown that kin selection cannot fully explain the effects that spatialization has on the emergence 
of a communication system; instead, spatial organization by itself, together with other factors such 
as discreteness and stochasticity, can play a major role in the emergence of cooperative 
communication. 

The role of spatial factors in the emergence of simple, altruistic signalling systems is also 
discussed in Noble et al. 2002, together with other adaptive factors like the handicap principle 
(Zahavi 1975) and other ecological factors such as the presence of noise. 

In a model very similar to the one presented here, Cangelosi and Parisi 1998 were able to evolve 
an altruistic communication system in a population of ecological neural networks. These authors 
interpret the emergence of a good communication system in terms of the cognitive pressure towards 
communication: the evolution of good signallers is explained as a by-product of the independently 
evolving ability to categorize the environment. 

Finally, Marocco et al. 2003 tried to evolve a communication system in a population of neural 
networks controlling a robot arm whose task was to categorize objects by physically interacting 
with them. The evolution of such a communication system proved to be very difficult because of its 
altruistic character. In fact, a good communication system evolved only in 7 out of 10 replications 
of the simulation, even if (a) the networks were cognitively pre-adapted to resolve the task before 
the introduction of communication, and (b) the speaker was always the parent of the hearer, so that 
there was a strong pressure against the emergence of cheating due to kin-selection.  

 

2. Method 
In our simulations we use a simplified version of the ‘mushroom world’ (Parisi 1997, Cangelosi and 
Parisi 1998, Cangelosi and Harnad 2000). To survive and reproduce individuals must be able to 
distinguish between edible and poisonous mushrooms and they must eat the edible mushrooms and 
avoid the poisonous ones. Furthermore, organisms can send signals to each other for 
communicating the quality of the encountered mushrooms. The only difference with respect to the 
original mushroom world is that the new world is one-dimensional rather than bi-dimensional. This 
simplification has been introduced in order to make the study of the population dynamics easier and 
to discriminate better the roles played by the different adaptive factors. 

2.1 The environment and the task 

The environment is a corridor made up of 11 cells (figure 1). In each trial an organism is placed in 
the start cell at the beginning of the corridor and a mushroom is placed in the last cell of the corridor 
(the ‘mushroom cell’). If the organism reaches the mushroom cell it eats the mushroom contained in 
the cell. Mushrooms can be either edible or poisonous. If an organism eats an edible mushroom its 
reproductive chances (fitness) are increased by some amount, while eating a poisonous mushroom 
decreases the organism’s fitness (see below). The sensory system of the organisms is very limited: 
an organism can see the mushroom only if the organism finds itself in the cell immediately 
preceding the mushroom cell. Hence, without language the only strategy which is available to the 
organisms is to run through the entire corridor in each trial in order to reach the last but one cell and 
see whether the mushroom is edible or poisonous. However, if another organism is near to the 
mushroom so that it can see it, and this organism sends to the first organism a linguistic signal that 
tells the first organism whether the mushroom is edible or poisonous, the first organism can avoid 
spending its energy in order to run through the corridor in the trials with poisonous mushrooms. 
This confers an advantage to the first organism (the hearer) but not to the other organism (the 
speaker). 



[Insert figure 1 about here] 

2.2 The neural network 

The neural network that controls the organisms’ behavior is made up of 17 nodes and 32 connection 
weights, biases included (figure 2). There are 10 visual input nodes whose activation encodes the 
perceptual properties (when visible) of mushrooms, and 2 linguistic input nodes with continuous 
activation between –1 and +1 which encode heard signals.  

[Insert figure 2 about here] 

Each individual mushroom has perceptual properties that are different from the properties of all 
other mushrooms. The perceptual properties of mushrooms are encoded as vectors of 10 bipolar 
values2 in the input nodes of the neural network controlling the organism’s behavior. There are 210 
edible mushrooms and 210 poisonous ones. The perceptual properties of edible mushrooms are 
encoded as all and only the patterns that differ by 4 bits from the prototype represented by ten – 1s, 
whereas the perceptual properties of poisonous mushrooms are all and only the patterns that differ 
by 4 bits from the prototype represented by ten +1s.  

When organisms act as hearers the activation of the 2 linguistic input nodes corresponds to the 
activation of the 2 linguistic output nodes of the other organism which is near to the mushroom, 
while when an organism is playing the role of the speaker the activations of the linguistic input 
nodes are set to zero. 

There are only 2 hidden nodes (with bias) fully connected both with the input nodes and with the 
output nodes. The locomotion of the organisms is controlled by a single output node with binary 
activation. If the activation is one, the organism moves to the next cell in the corridor. Otherwise, it 
stays still. Movement has a cost, so that individual fitness is decreased by one energy unit each time 
the individual makes one step forward.  

Finally, there are two linguistic output nodes with continuous activation between –1 and +1. The 
activation vector of these two nodes constitutes the linguistic signal that can be transmitted either to 
some other organism (in the simulations with language) and/or to oneself (in the 'talking-to-oneself’ 
simulation, see § 3.4). 

2.3 Individual Life 

The life of each individual lasts 420 trials, one for each possible mushroom. In each trial the 
organism is placed in the start cell of the corridor and one mushroom is placed in the last cell. 
Another organism is chosen randomly from among the remaining members of the population, it is 
placed near the mushroom so that it can perceive the mushroom’s perceptual properties, and it emits 
a linguistic signal (linguistic output) which is received by the tested organism as a linguistic input. 
If the tested organism reaches the mushroom cell, it eats the mushroom and goes on to the next trial. 
In any case, a trial is terminated after 11 input-output cycles of the neural network. 

                                                 
2 “Bipolar” means that each value can be either +1 or –1. We have used bipolar values instead of binary values (1/0) 
because bipolar encoding permits to deal better with situations in which the organism does not perceive the mushroom. 
In such situations we give as perceptual input of the organism’s neural network the vector composed by all zeros, so 
that the influence of the perceptual input on the hidden vector will be null. This strategy seems to be quite 
straightforward but has a drawback when used with a binary encoding. In fact, in such an encoding zeros have a 
“meaning” and even though this “meaning” cannot be “represented” in the connection weights between the input nodes 
and the hidden nodes, it would be represented in hidden nodes’ biases. 



2.4 The fitness formula 

At the end of the 420 trials, the fitness of an individual is calculated according to the following rule: 
(1) 30 energy units are added for each edible mushroom eaten; (2) 5 energy units are subtracted for 
each poisonous mushroom eaten; (3) 1 energy unit is subtracted for each movement the organism 
has made during its life3. Hence, for the organisms in the simulations with language, the maximum 
possible fitness is: 

Fmax = 30 × 210 (edible mushrooms) – 5 × 0 (poisonous mushrooms) – 210 × 10 (steps 
necessary for eating a mushroom) = 6300 – 2100 = 4200 

In the graphs the fitness is always normalized (that is, it is divided by 4200) so that the maximum 
possible fitness is 1. 

2.5 The genetic algorithm4

In each generation the population is constituted by 100 organisms. The genome of the organisms 
contains all the connection weights and biases of their neural network. In the first generation the 
weights and biases are initialized with a random value in the range [– 4; + 4]. After all the 
organisms have lived their lives and their fitness has been calculated, individuals are selected for 
reproduction by the roulette with windowing method, they reproduce (sexually), and some 
mutations are added to the genomes inherited by the offspring. Ten replications (with different 
initial conditions) are run for each different simulation and each replication lasts 1000 generations. 

In the standard roulette method (Mitchell 1996), one creates a ‘roulette wheel’ such that for each 
individual the size of its slice of the roulette wheel is proportional to the individual’s fitness and, for 
each wheel spin, the individual selected for reproduction is the one under the wheel marker. In this 
way, the probability of reproduction for each individual corresponds to the fitness of the individual 
divided by the average fitness of the population. Adding the ‘windowing’ method to the roulette 
method, one subtracts the fitness value of the worst individual of the population for all the 
individuals, so that each individual will have a fitness value between 0 and the fitness value of the 
best individual minus the fitness value of the worst individual. This is done in order to maintain a 
reasonable selective pressure even when the average fitness reaches a high value and the differences 
in fitness between individuals are very low.  

Reproduction is sexual and the population is divided by sex: in each generation there are 50 
‘males’ and 50 ‘females’. Each individual has two parents, one male and one female. One male 
individual and one female individual are selected for reproduction using the method described 
above and they reproduce. Each couple makes two offspring with a double point cross-over. For 
each offspring, we select two randomly chosen integer numbers between 0 and 31 (the genome is 
made up of 32 connection weights) which constitute the two points for the cross-over; then, we take 
one segment between these two points from the ‘father’ and the other from the ‘mother’ and 
generate in this way the genome of the offspring. This double-point cross-over treats the genome as 
a circle, in that there is no difference in the probability of cross-over between the ‘centre’ and the 
‘periphery’ of the genome. 

                                                 
3 The values used in the fitness formula are arbitrary. The reason of the asymmetry between the contributions of edible 
and poisonous mushrooms to fitness (30 vs. 5) is that there must be some advantage in moving and eating randomly; 
otherwise, at the beginning of the simulation organisms that stay still would be selected and no evolution could start at 
all (consider that just reaching for a mushroom has its own cost of 10). 
4 This genetic algorithm has been used for all the simulations except the simulation on docility. The algorithm used in 
this last simulation is described in § 3.3. 



After all the new individuals are created, we apply random mutations to the genome in the 
following way: each single weight of each individual has 0.1% probability to have its current value 
replaced by a new value randomly chosen in the range [– 4; + 4]. 

3. Simulations 

3.1 Language does not evolve if it is advantageous to hearers but not to speakers 

In the baseline simulation we try to biologically evolve language when in each trial the speaker is 
randomly selected from the population and, therefore, it tends not to share the same genes of the 
hearer.  

We measure the quality of the emergent language in the following way. A particular linguistic 
signal produced by a particular organism is constituted by a vector of two continuous numbers in 
the range [– 1; + 1], i.e., the activation vector of the two linguistic output nodes of the organism. 
Hence, a signal can be considered as a point in a bi-dimensional space. Let’s call E and P, 
respectively, the set of points (‘cloud’) which represent the signals produced by all the organisms of 
one generation in presence of all edible and poisonous mushrooms. A good language is one in 
which the two clouds E and P are (1) as small as possible in size (all the mushrooms belonging to 
the same category are named in similar ways), and (2) as distant as possible from one another (the 
mushrooms belonging to different categories are named in different ways)5. We calculate (1) by 
normalizing (in the range [0; 1]) the mean distance of the points of a cloud from its geometrical 
centre and taking its inverse (i.e. 1– x). Then, we measure (2) as the distance between the 
geometrical centres of the two clouds (also normalized in the range [0; 1]). Finally, the quality of 
the language produced in a generation is calculated as the mean of these two measures.  

To give the reader an idea of what communication systems look like and of our language quality 
measure, in figure 3 we show three communication systems of different quality: the black circles 
represent the signals produced by all the individuals of one population in response to all edible 
mushrooms (i.e., cloud E) and the grey crosses represents the signals produced in response to 
poisonous mushrooms (i.e. cloud P). Figure 3a represents the communication system at the 
beginning of the simulation, when organisms have random connection weights: as can be seen, 
signals are completely random and one cannot tell the category of the mushroom which is signalled 
(language quality = 0.03). Figure 3b represents a communication system of low quality (0.33), in 
which the two clouds exist but they overlap significantly. Finally, figure 3c represents a very good 
communication system (language quality = 0.83) in which the two clouds are quite small and 
distant from each other. 

[Insert figure 3 about here] 

Figure 4a shows average fitness and language quality in a single replication of the simulation. 
Both the language quality and the average fitness are very unstable, fluctuating continually together 
between 0 and 1. How can this be explained? If we analyse the curves of the base-line simulation, 
we actually find a temporal pattern that can be described in the following way:  

(1) fitness tends to stabilize at approximately 0.55; 

(2) language quality tends to grow; 
                                                 
5 These two properties guarantee both that (a) each individual produces similar signals for mushrooms that are members 
of the same category and different signals for members of different categories, and (b) language is shared across 
individuals in the population. On the contrary, if the two conditions are not satisfied, then we don’t know whether this is 
because single individuals do not produce good languages or because there is no agreement between the (good) private 
signaling systems of different individuals. As we are interested in the language quality of the entire population, we can 
ignore this distinction and use the size of the two clouds and the distance between the two clouds as good indicators of 
overall language quality. 



(3) after language quality has reached a certain level, fitness increases very rapidly until 
language quality suddenly drops down, and then fitness also drops down; 

(4) finally, fitness tends to increase again and the cycle starts again. 

[Insert figure 4 about here] 

This pattern is present in every replication of the simulation, and this implies that the selective 
pressures that produce such results are reliable and strong. As it turns out, the fitness value of 0.55 
is exactly the maximum value that can be reached without the help of language: 

FmaxNoLang = (Fmax – 210 × 9 (steps necessary for checking the quality of poisonous 
mushrooms)) / 4200 = (4200 – 1890) / 4200 = 0.55 

A possible interpretation of the pattern described above is the following. First, the organisms 
learn to discriminate between edible and poisonous mushrooms without listening to the signals 
received, where not listening to the signals means simply having very low weight values in the 
connections linking the linguistic input units with the hidden units. Then, for reasons that we will 
discuss in a moment, language quality increases so that the organisms start to rely on linguistic 
signals for not moving when a poisonous mushroom is present, and this leads to an increase in 
fitness. However, quite suddenly, language quality drops down and this causes the organisms’ 
fitness to decrease because organisms are misled by the signals they receive. After they have 
learned not to listen to the signals, fitness re-starts to rise towards 0.5, and the cycle begins again.  

The increase in language quality during the phase in which signals are ignored can be explained 
by both cognitive and genetic factors. Surviving and reproducing in the mushroom world implies 
that organisms must develop some ability to categorize the mushrooms appropriately. This means 
that all edible mushrooms tend to elicit similar activation patterns in the network’s internal units 
which are different from the activation patterns elicited by poisonous mushrooms. Since the internal 
units are connected to the linguistic output units, these similar internal activation patterns tend to 
result in similar linguistic signals for all edible mushrooms and very different linguistic signals for 
all poisonous mushrooms. This cognitive explanation for the emergence of a good language 
(Cangelosi and Parisi 1998) can be supplemented by an explanation based on genetic convergence. 
In these simulations genetic variability tends to decrease because of selective reproduction which 
causes the long term survival of only a few lineages. Since a good language is a language which is 
the same in the entire population, increasing genetic similarity can result in better language quality. 

The sudden drop in language quality in the next phase can be explained as a direct consequence 
of the altruistic character of the kind of communication we are dealing with here. Since selection 
favours only good understanding but not good speaking, bad speakers will be favoured against good 
ones because they can play the role of cheaters: bad speakers take advantage from the signals 
emitted by good ones while they emit signals that mislead other organisms. As a consequence, once 
a good communication system is in place, bad speakers will start to be selected against good ones 
and in a few generation this will result in a sudden decrease in overall language quality and in an 
accompanying drop in the average fitness of the population. 

The outcome of these conflicting evolutionary pressures is that a good communication system 
never stabilizes and this does not permit the full exploitation of the adaptive value of 
communication. If we look at the average results of 10 replications of the base-line simulation 
(figure 4b), we see that language quality does not reach very high values and, as a consequence, the 
average fitness of the population fluctuates around a value (0.65) which is just a little higher than 
the maximum value that can be reached without communicating at all (0.55). 



3.2 Kin selection allows language to evolve 

If language quality decreases because of the altruistic character of speaking, then language quality 
should not decrease if we add to the base-line simulation some adaptive factor that makes it possible 
for altruistic behaviours to evolve. So, we tested whether adding kin selection to our simulation 
would result in the emergence of a good and stable communication system. 

Kin selection has already been claimed to play a role in other language evolution models (Ackley 
and Littman 1994, Oliphant 1996), but this hypothesis has never been tested directly. In fact, 
previous work assumed kin selection was at work due to the spatialization of the organisms’ 
interactions and reproduction (for a criticism of such a use of kin selection theory, see Di Paolo 
1999). So, we decided to implement kin selection directly, by varying the probability that our 
organisms interact with close kin. The rationale for doing so is the following. Close kin tend to 
share the same genes; so, the higher the probability to speak to a close kin, the higher the chances 
that the altruistic behavior of producing a good language is preserved because it tends to confer an 
advantage to organisms with the same genes and, therefore, with the same altruistic behavior. 

In our simulations 50 out of the 100 individuals in each generation are males and 50 are females. 
For each breeding cycle, one male and one females are selected for reproduction with the roulette 
selection algorithm and the pair generates two offspring, one male and one female, with different 
cross-over points and different mutations on connection weights. This breeding method makes sure 
that each organism of the population has at least one full sibling. So, we implemented kin selection 
by varying the probability p with which in any trial the speaker is one of the full siblings of the 
hearer (with probability 1 – p the speaker is not one of the hearer’s full siblings, but can be a half 
sibling). 

We run different simulations with different values of p. Figure 5 compares the results of the base-
line simulation with those of the kin-simulations with p = 0.01, 0.05, 0.1 and 1, in terms of language 
quality (a) and average fitness (b). The results of the simulations are very clear: the higher the 
probability p of speaking to a close kin, the higher language quality and average fitness. Vice-versa, 
the lower the p, the lower the language quality and the average fitness of the population. With p = 
0.01, the results are practically the same as those of the baseline simulation. 

[Insert figure 5 about here] 

The fact that the results of the simulation with p = 0.1 are not very different from those with p = 1 
should cause no surprise. After all, p determines only the probability that the speaker is a full 
sibling of the hearer, but even when this is not the case, the speaker can share the same genes of the 
hearer either because it is a half sibling or simply because of the genetic convergence of the 
population discussed above. In fact, augmenting the ‘kin selection factor’ has the effect of adding 
an additional selective pressure for the stabilization of the language-production genes: in other 
words, kin selection simply strengthens a genetic pressure towards language emergence already 
present also in the base-line simulation. 

3.3 Cultural evolution of language through docility 

The preceding simulations have shown that the kind of communication system we are dealing with 
here is altruistic and, as such, it fails to emerge through genetic evolution unless under kin selection 
conditions. But one of the specific properties of human language with respect to animal 
communication systems is that human language is culturally, not genetically, transmitted.  Could 
this property have in influence on the emergence of the kind of (altruistic) use of communication we 
are dealing here? In 1990 Herbert Simon proposed an original hypothesis on the evolution of 
altruistic behaviour in humans which was based on the notion of ‘docility’ (Simon 1990). Docility 



refers to the propensity, characteristic of the human species, to learn socially (by imitation or by 
explicit teaching) how to behave. This propensity is biologically inherited in our species and it 
appears to be so strong that we can make the hypothesis that there has been a strong adaptive 
pressure during hominid evolution for the emergence of such a trait. (Consider the advantages that 
could derive from an innate predisposition to learn to imitate the behaviour of others in a context of 
highly social primates that are evolving the capacity of tool making and tool use, for instance). But 
for an individual to determine the contribution to its fitness of each behaviour which the individual 
is learning from others would be extremely hard, if not impossible. As a consequence, a docile 
organism will tend to learn whichever behaviour it will be taught, be it egoistic or altruistic, 
provided that the overall advantages of learning from others are higher than the disadvantages. 
According to Simon’s docility theory, in a population of docile individuals an altruistic behaviour 
can evolve if the following three conditions are satisfied:  

1) there is some advantage d in being disposed to learn from others, i.e., in being docile; 

2) organisms are not able to evaluate the contribution of each particular behavior that they learn 
from others to their own fitness; 

3) the advantage d of being docile is greater than the cost c of the altruistic behaviour. 

As the use of language that we are dealing with in this paper is altruistic and as human language 
is culturally transmitted (although on a probable genetic species-specific basis), Simon’s 
explanation of altruism seems to be applicable to language evolution. 

So, we have run a new simulation, the ‘docility simulation’, in which the connection weights of 
all individuals are always random at birth and are not inherited from parents. Instead, the genome of 
these organisms is constituted by one only gene, encoded as an integer number, which specifies an 
individual's ‘docility’, i.e., the number of language learning trials for that particular individual. In 
the first generation each individual is assigned a random value in the interval [0; 200] for this gene 
and this value is genetically transmitted with a 2% probability of being changed by adding or 
subtracting a random number in the range [– 100; 100]. In any case, docility is forced to stay in the 
interval [0; 500]. 

The life of organisms in this second simulation is divided into two periods: infancy and 
adulthood. During infancy, the organism is supposed to follow its parent and learn from its parent 
how to behave in different situations. Its inherited docility gene determines the number of back-
propagation learning cycles to which the infant exposes itself. Learning is imitative in that the 
teaching input of the back-propagation algorithm is the output of the infant’s parent (Hutchins and 
Hazlehurst 1995, Denaro and Parisi 1997). Since there are three kinds of situations to which 
organisms are exposed during their life, there are three different learning conditions: (1) 
comprehension learning, (2) decision learning, and (3) naming learning. Comprehension learning 
takes place when the organism is distant from the mushroom and has to decide whether to move or 
not to move according only to the signal it receives from another organism. Decision learning takes 
place when the organism is near the mushroom and its decision whether to move or not to move 
into the mushroom cell and eat the mushroom depends on both the visual input from the mushroom 
and the linguistic input. Finally, naming learning takes place when the organism acts as a speaker: 
the organism receives the perceptual properties of a mushroom as input and it has to produce a 
linguistic signal. 

In short, the number of learning cycles for each organism is determined by the organism’s 
inherited docility and for each learning cycle this is what happens: 

1) one of the three learning situations is randomly chosen together with one of the 420 mushrooms; 
2) the appropriate input is given both to the learner and to its parent; 
3) both the organism’s output and its parent’s output are calculated; 



4) the output of the parent is given to the child as teaching input with some added random noise (a 
random value chosen in the interval +0.25/-0.25 is added to the teaching input6); 

5) finally, the child’s connection weights are changed according to the back-propagation algorithm 
(with a learning rate of 0.3 and a momentum of 0.8). 

At the end of infancy an individual starts its adult life, which is identical to that of the genetic 
simulation.  

[Insert figure 6 about here] 

Figure 6 shows language quality, average fitness, and average value of the docility gene in this 
simulation. Since in this simulation organisms are born with random connection weights, they are 
bound to behave randomly unless they learn from their parents. The fact that the teachers of the 
organisms of any given generation are the selected organisms of the previous generation guarantees 
that what is learnt is a good behavior and the fact that some noise is always present in the cultural 
transmission of behavior guarantees that there is some added variability which is necessary for 
cultural evolution to take place. The results show that the average value of the docility gene rises 
very quickly until it reaches almost its maximum value (figure 6, thin line). Since organisms with a 
good foraging behavior tend to produce also a good language because of the cognitive pressure 
towards language emergence, young organisms will learn not only to discriminate edible from 
poisonous mushrooms, but also to produce a good language. And because of the fact that the 
behavior of these organisms is culturally learnt, the invasion of the population by cheaters is 
prevented: in fact, only individuals that are not very docile will produce a bad language, but those 
individuals cannot learn how to behave efficiently and therefore they will probably have a lower 
fitness than more docile (and altruistic) individual. As a result, to the increase in the average value 
of the docility gene corresponds a parallel increase in the quality of the language produced by the 
organisms, which reaches after about 200 generations the very high value of about 0.6 (figure 6, 
medium line). As it turns out, the correlation between docility and language quality is very high: 
0,967. Finally, since the organisms of this simulation can exploit all the advantages provided by a 
good communication system, their average fitness reaches almost the maximum possible value 
(figure 6, thick line). 

3.4 Language evolves if it is used to talk to oneself 

In all the simulations described so far we have assumed that language is used for social 
communication purposes, that is, in situations in which the emitter and the receiver of signals are 
two different individuals. But language can have useful functions even in situations in which the 
emitter and the receiver of a signal are the same individual, i.e., when an individual talks to itself. 
The particular function that we will consider here is language as an aid for memory.  

The initial situation is identical to that of the preceding simulations. An individual is placed in 
the start cell of the corridor, another randomly chosen individual is placed near the mushroom and it 
generates a signal which is heard by the first individual. On the basis of this signal the first 
individual can decide whether to approach the mushroom or refrain from doing so. However, since 
it takes 10 cycles to reach the mushroom, the signal must be available to the first individual in all 
these cycles in order for the individual to know what to do in each successive cycle. In the 
preceding simulations this problem was solved by assuming that the second individual, the speaker, 
continued to emit the signal until the end of the trial. In the present simulation the situation is 
                                                 
6 The results are quite robust with respect to the quantity of noise added, provided that this quantity is adequate for 
cultural evolution: if there is no noise, there is no room for improvement in behavioural capacity; on the other hand, if 
there is too much noise, good behaviours cannot be preserved. All noise values between 0.1 and 0.4 produce the same 
qualitative results.   



different. The emitter of the signal emits the signal only in the first cycle and then it goes away. All 
the first individual can do in this situation is to try to remember the signal by repeating the signal to 
itself until it reaches the mushroom. In the first cycle, when the signal arrives from the conspecific, 
the individual responds to the signal not only by either moving one cell forward toward the 
mushroom or avoiding doing so but also by producing a signal using its own linguistic output units. 
In the next cycles, the individual hears this self-produced signal and responds to it. Will a language 
evolve in these conditions? 

Notice that in the baseline simulation language was very unstable because there were both 
cognitive and genetic pressure for its emergence and a strong selective pressure against language 
emergence due to its altruistic character. In the present simulation, in which individuals talk to 
themselves, they have an interest in producing good signals because sometime they are the receivers 
of the signals produced by themselves. Therefore emitters that produce good signals will tend to 
have more chances to reproduce than emitters of bad signals because the emitters of good signals 
can remember correctly the information received about the quality of the mushroom present at the 
end of the corridor. This effect is independent from kin-relatedness. (It might be interpreted as kin-
relatedness in a single individual.) Hence, talking to oneself may constitute a selective pressure for 
the emergence of a good language even in populations in which language is exchanged between 
pairs of non-kin-related individuals.  

This prediction is confirmed by the results of the talking-to-oneself simulation. Figure 7 
compares average fitness and language quality in the baseline and the talking-to-oneself 
simulations. Language quality in the talking-to-oneself simulation is more stable and significantly 
higher than that of the baseline simulation: the range of fluctuation of language quality is [0.43; 
0.57] and [0.25; 0.45], respectively. As a result, the average fitness of the population is higher and 
more stable in the talking-to-oneself condition than in the baseline condition: fluctuation range is 
[0.78; 0.95] and [0.5; 0.8], respectively. 

[Insert figure 7 about here] 

4. Discussion 
 

For language to emerge biologically it must involve some selective advantage for both the 
emitters and the receivers of signals. Language requires both good speakers, i.e., individuals that 
emit the appropriate signals in the appropriate circumstances, and good hearers, i.e., individuals that 
respond appropriately to the signals that are produced by the speakers. But good speakers emerge 
only if it is advantageous to them to produce the appropriate signals in the appropriate 
circumstances, and good hearers emerge only if it is advantageous to them to respond appropriately 
to these signals. If linguistic signals provide the hearer with useful information, then the production 
of linguistic signals by the speaker is an altruistic behaviour provided that the behaviour with which 
the hearer responds to the linguistic signals have no useful consequences for the speaker and do not 
increase the speaker’s reproductive chances. In fact, our simulations show that if it benefits the 
hearer but not the speaker language fails to emerge. Individuals that happen to be good speakers 
may increase the reproductive chances of hearers which benefit from the linguistic signals produced 
by the speakers but which, when it is their turn to function as speakers, may turn out not be good 
speakers. In this manner, although it would be generally useful, a stable shared language may never 
evolve.  

Indeed, the results of our base-line simulation support this analysis and replicate the results of 
other simulations of the emergence of altruistic communication systems (Ackley and Littman 1994; 
Oliphant 1996; Marocco et al. 2003). However, Cangelosi and Parisi 1998 have described a model 
very similar to the one we adopt here in which a good communication system did evolve even 
without any benefit to the speaker. The explanation that those authors gave for their striking result 



was that the emergence of a communication system was a by-product of the organisms’ ability to 
categorize the environment. Since the organisms’ fitness depends on their ability to tell poisonous 
from edible mushrooms, there is a strong selective pressure for the emergence of good 
representation abilities, that is, for having very similar internal representations (vectors of activation 
values in the internal layer neurons) for mushrooms belonging to the same category and very 
different representations for mushrooms belonging to the other category. This will result in the 
spontaneous emergence of a good language just because the activation pattern of the linguistic 
output units depends on the activation pattern of the internal units. However, this might be only part 
of the explanation. The relationship between language and categorization can only explain why the 
quality of the language produced by a single individual tends to be high, but it cannot explain why 
language is shared in the population. In order to explain why different individuals belonging to the 
same population share the same language something more is to be added: that is, the genetic 
similarity between individuals produced by genetic convergence of the population. Only the fact 
that all organisms share similar connection weights linking the perceptual input to the hidden layer 
and the hidden layer to the linguistic output can explain why the cognitive pressures towards the 
emergence of a good individual communication system (with similar signals for mushrooms 
belonging to the same category and different signals for mushrooms belonging to the other 
category) results in the spontaneous emergence of a shared language in the whole population. If this 
analysis is correct, than the difference between the results of our simulation and that of Cangelosi 
and Parisi 1998 might be explained by a difference in the genetic convergence of the population due 
to differences in the simulation set-up such as the different difficulty of the task or the different 
genetic algorithm used. Further analyses are needed on this topic but some preliminary results of 
such analyses seem to support this interpretation. 

Apart from the role played by the structural coupling between categorization abilities and 
linguistic behaviour, three distinct mechanisms may have made it possible for language to emerge 
even if the production of linguistic signals is altruistic behavior which benefits the hearer but not the 
speaker. 

One mechanism is kin selection. Our simulations show that, in accordance with kin selection 
theory (Hamilton 1964), the probability that the speaker and the hearer share the same genes 
directly affects the stability of a communication system which benefits the hearer but not the 
speaker. Animal signals mostly communicate information about the sender of the signal - its 
location, species, identity, emotional state, intentions and attitudes -, not information about the 
external environment (Hauser 1996). Surely, there are some exceptions like honey bees dance and 
vervet monkeys alarm calls, but human language clearly is the most sophisticated communication 
system for communicating information about the external environment. While kin selection was 
likely one of the major factors in the evolution of social insects’ communication systems, we don’t 
know what could have been the role of kin selection in the evolution of primate (and human) 
communication. Hominid evolution took place in small, kin-related groups, and long juvenile 
period of humans may have contributed to a substantial increase in the probability that 
communicative interactions took place between related individuals. As our kin selection simulations 
demonstrate, if this is the case, then the increase in genetic relatedness between the speaker and the 
hearer might have been one factor, among many others, which favoured the evolution of (the 
altruistic use of) language. 

However, if language is restricted to kin-related groups its usefulness appears to be limited. 
Language becomes much more useful if it represents a vehicle of communication and interaction 
among larger groups of genetically unrelated individuals. Language that benefits the hearer but not 
the speaker may emerge in larger groups of unrelated individuals if it is culturally rather than 
biologically transmitted. Cultural transmission is learning from others. Human beings appear to 
have a genetically inherited tendency to learn from others whatever behavior others may care to 
teach them. This ‘docility’ evolves because it confers an advantage to the individual that possesses 



it: a docile individual can learn from others behaviours which would be more difficult to learn by 
directly interacting with the non-social world. These behaviours generally tend to increase the 
reproductive chances of the learning individual but in some circumstances and in some of their uses 
they may benefit others. But for docile organisms, learning from others is ‘blind’, in the sense that 
the learning individual does not (easily) distinguish between what is beneficial for himself or herself 
and what is beneficial for others, especially because this kind of learning takes place mostly when 
the individual is young. Thus, altruistic behaviours, including the altruistic use of language we are 
dealing with here, can emerge as a cultural by-product of the genetically evolving docility of a 
population. 

Studying the influence of cultural learning on language emergence is one of the major themes in 
the literature on computational models of language evolution (see, for example, Hutchins and 
Hazlehurst 1995; Batali 1998; Hurford 1999; Kirby 2000; Steels and Kaplan 2002). But none of the 
previous computational models of language evolution tested the hypothesis that the evolution of 
cultural transmission could have favoured the emergence of an altruistic use of language. Our 
docility simulation shows exactly this. It shows that linguistic docility, that is, a tendency to learn 
language from others, can emerge biologically and be biologically transmitted, and, if this is the 
case, the homogenization of linguistic behaviour induced by cultural transmission can favour the 
(cultural) emergence of an altruistic use of language. (For a general discussion of our docility 
simulation in the context of the biological hypotheses on the evolution of altruism, see Mirolli and 
Parisi 2004). 

Finally, a third mechanism may explain the emergence of a language that benefits the hearer and 
not the speaker in groups of genetically unrelated individuals even if the language is biologically 
and not culturally transmitted and evolved. This third mechanism is using the language not (only) to 
communicate with others but (also) to communicate with oneself. Generally, there is a tendency to 
think that language was used by humans to communicate with oneself only when language was 
already well developed and was sophisticated and complex; hence, quite recently compared with the 
first appearance of a proto-language. However, this is not necessarily the case. Even a very simple 
proto-language, for example, a language made up of single words (or holophrases), may be used to 
talk to oneself, for example as an aid for memory, with advantages for the individual that uses the 
language in this way.  

Based on this hypothesis, our talking-to-oneself simulation shows that linguistic signals that 
benefit the hearer but not the speaker can emerge biologically among genetically unrelated 
individuals if the hearer has to repeat the signals to himself or herself in order to keep them in 
memory. When one speaks to another individual and the signals benefit the hearer but not the 
speaker, the speaker acts altruistically and may benefit a hearer who is a poor speaker. This, as we 
have seen, is an obstacle for the biological emergence of language. But if the hearer has to repeat 
the signals to himself or herself in order to keep them in memory, then there is a positive selective 
pressure towards good speaking abilities because in talking-to-oneself the same individual is both 
speaker and hearer, and hence the advantage of understanding linguistic signals can only be 
exploited if it is accompanied with good productive capacities.  

We think that linguistic memory can be advantageous for at least two reasons: (a) delegating the 
memory function to the linguistic system can leave the sensory-motor system free to process other 
information useful for acting in the environment while linguistically remembering previous 
information, and (b) linguistic signals may occupy less space in memory than the raw information 
they refer to7. It might also be that another peculiar characteristics of human language, namely the 

                                                 
7 Recent neuro-psychological evidence seems to suggests that humans have indeed (at least) two different working 
memory systems: the first one is non-linguistic and it is shared with other primates; the second one seems to involve 
linguistic areas. Furthermore, these two systems seem to have not only different neuro-anatomical organization and 
different evolutionary origins, but also quite different functional properties (Gruber and Goschke 2004) 



fact that it uses displaced signals (Hockett 1960), has become possible only after hominids had 
improved their memory by talking to themselves. (For the possible role of linguistic memory in the 
evolutionary origin of language, see Aboitiz and Garcìa 1997.) In any case, we think it would be 
worthwhile to investigate those issues using a more ecological and embodied simulative framework. 

Furthermore, the use of the linguistic system as an aid to memory is only an example of the 
many possible individual uses of the social communication system (Vygotsky 1962, Jackendoff 
1996, Clark 1998). For example, in other simulations we showed how learning a simple language 
can improve the ability to categorize the world (Mirolli and Parisi in press). In general, we think 
that the use of language as an aid to cognition can have played an important role in language 
evolution. Our talking-to-oneself simulation is just a very simple demonstration that this could be 
the case. Much more work (both empirical and computational) is to be done in order to better 
understand the intimate relationship between language and cognition and the phylogenetic and 
ontogenetic co-evolution between the two. 

5. Conclusion 
Human language is an incredibly complicated phenomenon which depends on the individual brain, 
on ontogenetic development, and on genetic and glossogenetic (cultural) evolution. All those 
systems are complex systems, acting at different time scales, which in turn interact with one another 
in complex ways. So, it is very unlikely that a single simple explanation can be found for the 
emergence of human language. Indeed, it is very unlikely that a single discipline or a single 
methodology can suffice for understanding all the amazing features of human language or the 
mechanisms and factors that generated them.   

In the simulations described in the present paper we singled out one particular feature of human 
language, namely, the fact that it is a particularly sophisticated system for informing other 
individuals about the external environment, and we tried to analyse some of the factors that could 
have played a role in the evolutionary emergence of this feature: its altruistic character, the social 
scope of its use which could result in kin selection, the fact that language is culturally transmitted, 
and the fact that human language is not only a communication system, but is also used for 
improving individual, cognitive functions such as memory. A lot of more work needs to be done in 
order to increase our understanding of the emergence of all the important features of human 
language.  
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Figure 1. The environment at the beginning of each trial. The tested organism (hearer) is placed at 
the beginning of the corridor and a mushroom is placed at the end. Another organism (speaker) is 
placed near to the mushroom and it sends a signal (linguistic output) to the hearer. The perceptual 
properties of the mushroom are perceived only when the organism is in the cell represented with 
thick lines. If an organism enters the mushroom cell, it eats the mushroom and the trial ends. 
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Figure 2: The neural network.  

 

Figure 3: Communication systems of very low (a), medium (b) and high (c) quality. Black circles 
represent signals produced for edible mushrooms (i.e. cloud E) and grey crosses represent signals 
produced for poisonous mushrooms (i.e. cloud P). See text for details. 



 

Figure 4: Average fitness and language quality of a single replication (a) and of 10 replications (b) 
of the base-line simulation. 

 

Figure 5: Language quality (a) and average fitness (b) of the base-line and 1%, 5%, 10% and 100% 
kin simulations. Average results of 10 replications. 



 

Figure 6: Language quality, average fitness and average value of the docility gene of the docility 
simulation. Average results of 10 replications of the simulation. 

 

Figure 7: Average fitness and language quality of the talking-to-oneself (TTO) simulations and of 
the base-line (BL). Average results of 10 replications of both simulations. 
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