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Abstract

Current models of reinforcement learning
are based on the assumption that learning
must be guided by rewarding (unconditioned)
stimuli. On the other hand, there is em-
pirical evidence that dopamine bursts, which
are commonly considered as the reinforcement
learning signals, can also be triggered by ap-
parently neutral stimuli, and that this can
lead to conditioning phenomena in absence
of any rewarding stimuli. In this paper we
present a computational model, based on an
hypothesis proposed in Redgrave and Gurney
(2006), in which dopamine release is directly
triggered by the superior colliculus (a dorsal
midbrain structure) when it detects novel vi-
sual stimuli and this supports instrumental
conditioning similarly to that usually ascribed
to rewarding stimuli. The model incorporates
various biological constraints, for example the
anatomical and physiological data related to
the micro-architecture of the superior collicu-
lus presented in Binns and Salt (1997). The
model is validated by reproducing with a sim-
ulated robotic rat the results of an experiment
with real rats on the role of intrinsically rein-
forcing properties of apparently neutral stim-
uli reported in Reed et al. (1996).

1 Introduction

Organisms’ capacity for associating a rewarding
event with the action that caused it was first stud-
ied by Thorndike (Law of effect ; Thorndike, 1911).
Modern physiological techniques now make it pos-
sible to record the activity of neurons in ven-

tral midbrain while these associations are being
formed. These experiments show that a short burst
of dopamine (“phasic dopamine response”) takes
place following the rewarding event. This signal is
now considered to cause the formation of the associ-
ations studied by Thorndike (Schultz, 1998).

There is a vast amount of evidence about the im-
portant role played by the dopamine (DA) as a sig-
nal associated to reward prediction in conditioning
learning. For example, Schultz et al. (1997) report a
widely accepted set of data showing the correlation
between DA phasic activation and primary reward
presentations. Nonetheless, this correlation is not
static: for instance, when an animal learns to as-
sociate a conditioned stimulus (CS) with an uncon-
ditioned stimulus (US), the DA burst starts to be
triggered by the appearance of the CS instead of the
US. This switch in the occurrence of DA activation
is considered to be the neural mechanism allowing
the process of reward prediction learning. Most of
these data can be modeled with the reinforcement
learning temporal difference (TD) algorithm devel-
oped in the machine learning field by Sutton and
Barto (1981, 1987, 1998). The essential feature of
the TD learning algorithm consists in producing a
signal whenever there is an error in the predictions
of the rewards following the actions. This error sig-
nal modulates learning in two ways: (a) it affects
the probabilities of triggering different actions in dif-
ferent contexts; (b) it modifies the evaluation of the
current perceptual state (from which the error it-
self is computed) expressed in terms of expected fu-
ture rewards. The hypothesis that phasic dopamine
bursts correspond to the reward prediction error sig-
nal of the TD learning model has driven the col-
lection and systematization of a wealth of empirical



data, and constitutes the currently most influential
view of dopamine role in conditioning experiments
(Montague et al., 1996; Schultz et al., 1997; Schultz
and Dickinson, 2000; Schultz, 2002).

Notwithstanding its important merits, the reward
prediction error hypothesis has important limita-
tions. A first limitation is that it does not take into
account the role of internal motivations in modulat-
ing the effects of external rewards and it seems to
conflate the related but different phenomena of clas-
sical/Pavlovian and instrumental/operant condition-
ing (see, for example, Dayan and Balleine (2002);
O’Reilly et al. (2007)). A number of biologically-
plausible computational models have been recently
proposed that try to overcome these limitations of
the standard TD model (Balkenius and Moren, 2000;
O’Reilly et al., 2007; Mannella et al., 2007, 2008).

A second important limitation of the reward pre-
diction error hypothesis is illustrated by Redgrave
and Gurney (2006) who review three classes of em-
pirical findings which seem to be in contrast with the
identification of the phasic dopamine burst with the
reward prediction error postulated by the TD model:
(a) phasic DA responses have been recorded follow-
ing stimuli with no apparent rewarding value, if these
stimuli have not been previously shown to the organ-
ism: novelty causes phasic DA independently of the
appetitive value of the stimulus; (b) while the time
required to establish an association varies depending
on both the complexity and the appetibility of the
stimulus, phasic DA responses do not show any sig-
nificant difference depending on these two parame-
ters (furthermore, there is no variation across species
in this respect); (c) phasic DA responses temporally
precede gaze shifts (latency 70-100 ms and 150-200
ms respectively), meaning that they are too fast to
be based on a complex computational analysis of the
stimulus, which would be required to evaluate the
true “economic value” of reward.

Based on these findings, Redgrave and Gurney
(2006) proposed an alternative hypothesis on the role
of phasic dopamine bursts in conditioning phenom-
ena: namely, that dopamine represents a sensory
prediction error signal which is critical for learning
the causal relationships between an animal’s own ac-
tions and their effects on the environment, irrespec-
tive of the rewarding value of those effects. Further
experimental evidence seems to support this view. In
fact, beyond triggering phasic dopamine responses,
apparently neutral stimuli like light flashes are also
able to support instrumental learning of the actions
which cause those stimuli to appear (Reed et al.,
1996). The adaptive significance of this dopamine-
based action-outcome learning would lie in the fact
that it might allow the acquisition of skills and
knowledge that might be later exploited to pursue
biologically relevant goals. This is explicitly shown

in “response preconditioning experiments”. In one
example of these experiments, the acquisition of a
lever-press action on the basis of a light flash, fol-
lowed by a classical light-food conditioning process
which gives appetitive value to the light, is able to
subsequently elicit lever press responses with a much
higher frequency with respect to situations in which
the lever pressing action was associated with stimuli
different than the valued light (St Claire-Smith and
MacLaren, 1983). This outcome can be explained
only in terms of knowledge acquired during the first
instrumental conditioning phase in relation to the
(lever-press)-(light) association.

While there are several biologically-plausible mod-
els of standard classical and instrumental condi-
tioning which also tackle the aforementioned limits
of the standard TD learning models, there are no
biologically-plausible models on the role and sources
of dopamine signals driving learning processes on
the basis of “neutral” action outcomes. Recently,
several models have been proposed to investigate
the intrinsic reinforcing properties of neutral stimuli
(e.g. Schmidhuber, 1991; Barto et al., 2004; Oudeyer
et al., 2007; Schembri et al., 2007). However, these
models have been developed within the machine
learning community and so they do not incorporate
relevant empirical constraints, both anatomical and
physiological, available on these phenomena.

Currently, the most well developed hypothesis re-
garding the neural basis of instrumental condition-
ing guided by neutral stimuli is that of Redgrave
and Gurney (2006), according to which this kind of
learning depends on the triggering of the dopamine
learning signal by the superior colliculus (SC), a dor-
sal midbrain structure. In support of this hypothesis
there are four kinds of empirical evidence: (1) the
neurons of the SC are specifically sensitive to changes
in luminance produced by sudden appearance or dis-
appearance of stimuli in the visual field (Wurtz and
Albano, 1980); (2) anatomically, the SC provides a
route from retinal ganglion cells to the dopaminergic
neurons of the substantia nigra pars compacta (SNc)
(Comoli et al., 2003; McHaffie et al., 2006); (3) SC
latencies to the appearance of visual stimuli are al-
ways shorter than those in SNc (Comoli et al., 2003;
Coizet et al., 2003); (4) lesioning the SC stops SNc’s
responses to luminance changes whilst lesioning vi-
sual cortex does not (Dommett et al., 2005; Katsuta
and Isa, 2003).

This work proposes, for the first time, a compu-
tational model that accounts for some of these data.
In particular the model shows how a learning rule
which includes influences from phasic dopamine, on-
going motor activity and contextual (visual) input
can lead, qualitatively, to the kind of behavioural
patterns observed in Reed et al. (1996). Activation of
phasic dopamine is triggered via the superior collicu-



lus (SC) which has superficial layers of SC with a mi-
crostructure as the one proposed by Binns and Salt
(1997) on the basis of neuro-anatomical and neuro-
physiological data. The whole model is validated by
reproducing with a simulated robotic rat (some of)
the empirical results of experiments on real rats re-
ported in Reed et al. (1996).

The rest of the paper is organised as follows: Sect.
2 reports the original experiments addressed by the
model; Sect. 3 describes the simulated robotic rat
and environment used to test the model; Sect. 4
contains a detailed description of the model; Sect.
5 reports the results of the tests; finally, Sect. 6
concludes the paper.

2 Target experiment

The model presented in this paper, described in
Sect. 4, is meant to reproduce the results on the
role of intrinsically reinforcing properties of appar-
ently neutral stimuli reported in Reed et al. (1996),
in particular those of “experiment 4” which was or-
ganised as follows. Eight rats were set in an operant
conditioning chamber containing a light located on
the ceiling (the source of the neutral stimulus) and
two levers. No appetitive rewards, such as food or
water, were delivered to the rats during the whole ex-
periment. The pressure of lever 1 caused an onset of
the light lasting 2s. In this regards, the experiment
used a variable interval schedule: the light flash fol-
lowed the lever-1 pressure only if this was performed
after the end of a variable interval (VI). This interval
ranged in (1, 120)s and started from the beginning of
the test or the last light flash. The whole test lasted
eight sessions of 25min each (for simplicity, here the
experiment consists in only one 25min session).

The results of the test shows that the number
of pressings of the lever associated with light sig-
nificantly increase with learning. In particular, de-
spite the absence of primary rewards, the rats clearly
change their disposition to pressing the two levers:
the pressure ratio changes to approximately 4:1 in
favour of the target lever (Reed et al., 1996, p. 43).

3 The simulated environment, robot
and experiments

The neural model presented here was tested with
a simulated robotic rat implemented on the ba-
sis of the 3D physical world simulator WebotsTM.
The program implementing the model is written in
MatlabTM and interfaced with WebotsTM through a
TCP/IP connection.

The environment is formed by a grey-walled box
containing two levers and a light represented with
rectangles having different colours. A pressure of
lever 1 is followed by a light stimulus, lasting 2s,
in the case the current variable interval has elapsed,

otherwise it has no effect (the variable intervals start
from the last flash light and have a random duration
of (1, 120)s. A pressure of lever 2 has no effect.

The simulated robot’s chassis roughly reproduces
the body of a rat on the basis of cylinders and cones.
The robot is endowed with two wheels controlled by
two independent motors. The robot is also equipped
with two 64×64 pixel cameras each having a 155 de-
grees pan field (the fields of the two cameras overlap
10 degrees at the robot’s front). Three “abstract sen-
sors” are used to encode information about the levers
and the light. In particular, the first two (l1 and l2)
encode in a binary fashion the presence/absence of
lever 1 and lever 2, and the third encodes in a binary
fashion the presence/absence of the light. The rat
has also three whiskers on each side of the head, used
for obstacle avoidance (see below). Each whisker is
implemented with a thin cylinder attached to the
robot’s head with a spring joint: the angle of the
joint is used as the information that the sensor re-
turns to the robot.

The behaviour of the rat is based on three hard-
wired routines: (1) “Obstacle avoidance”: whenever
a whisker detects a contact with an obstacle, the rou-
tine is invoked and causes the rat to move away from
it on the basis of the activation of all whiskers; (2)
“Press lever”: whenever one of the two units of the
motor cortex of the model gets activated (this is the
output component of the model, see eq. 3 below), the
robot approaches the corresponding lever on the ba-
sis of the position of such lever on the robot cameras’
images and presses it (by hitting it with any part of
the body). (3) “Explore”: in all other cases, the
rat moves straight ahead (together with the obstacle
avoidance routine, this causes the rat to randomly
explore the environment).

This work has been carried out within a broad re-
search agenda aiming to produce models that are not
only biologically plausible, but are also capable of
being embedded in autonomous agents tackling real-
istic scenarios. The rational for this approach is that
closing the agent-environment-agent loop forces us to
consider behaviourally relevant time series of inputs
to the model and to interpret model outputs in terms
of explicit behaviour, rather than abstracting their
significance ad hoc. Further, we are confronted with
the need to design systems having all the compo-
nents necessary to enable them to function correctly
in a complete sensorimotor interaction with the envi-
ronment. This process may suggest mechanisms that
are, perforce, required to perform the function in the
model, and whose existence may therefore be pre-
dicted in the animal. However, an effect of this strat-
egy is that, for simplicity, much of the overall model
(especially that required to evaluate sensory input
and produce motor output) may be represented in a
way that has only comparatively weak links with the
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Figure 1: (a) The neural architecture of the model. (b) The simulated environment and rat. The three rectangles on

the walls represents the two levers and the light source. The two square images on the left of the graph are the images

perceived by the two cameras of the rat.

biology (e.g using localist highly-abstract represen-
tations as input signals and hardwired low-level be-
havioural routines). In spite of these simplifications,
the model’s core aspects, such as its overall archi-
tecture and learning mechanisms, were designed in a
biologically relevant form. We think that even this
shallow level of embodiment helps framing models
in the right perspective. For example, in this paper
the variable duration of the experiment phases, de-
pendent on the noisy interplay between the rat and
the environment, posed important challenges to the
robustness of the model with respect to stimuli’s du-
ration and delays.

4 The model

Fig. 1 shows the neural architecture of the model. As
mentioned in Sect. 3, the input is formed by three
binary sensors encoding the presence/absence of the
two levers and the light (L1, L2, L). The output of
the model is formed by the two neurons of the motor
cortex that trigger the execution of the lever-press
routine targeting either one of the two levers. The
model is composed of two subsystems: (1) the cor-
tical pathway subsystem which propagates the sig-
nals in sequence from the associative cortex (AC) to
the basal ganglia (BG) and then to the motor cortex
(MC), and implements action selection; (2) the supe-
rior colliculus/dopamine subsystem which produces
the dopamine learning signal used to update the AC-
BG connection weights depending on the light stim-
ulus.

In what follows, τx denotes the decay rate of a
leaky neuron x, the sub-index xp denotes the activa-
tion potential of neuron x, symbols like X, x, and x

denote matrices, column vectors and scalars respec-
tively (transposed matrices and vectors are denoted
X′ and x′ respectively). Functions and their deriva-
tives are represented as f [x] and ḟ [x], respectively.
The functions pos and step are respectively defined
as pos[x] = max[0, x] and as step[x] = 1 if x ≥ 0
and step[x] = 0 otherwise. Hyperbolic tangents are
represented as tanh[x]. The values of the model’s
parameters are listed at the end of the section.

4.1 The cortical pathway

The cortical subsystem is conceived as an action
selector implementing operant conditioning. This
choice is in line with proposing that basal ganglia
are the locus of learned rigid sensorimotor S-R asso-
ciations (“habits”; Yin and Knowlton, 2006).

The cortical pathway receives input signals from
the visual sensors related to the levers (L1, L2) and
provides as output one of the two possible motor ac-
tions, “press lever 1” or “press lever 2”. The signals
coming from the visual input (inp) are processed by
the leaky neurons of the AC (ac), having an hyper-
bolic tangent transfer function:

τac · ȧcp = −acp + inp (1)
ac = pos[tanh[acp]]

These signals are then propagated from AC to BG
via all-to-all connections Wac−bg. BG are formed by
two neurons bg which implement a bias-competition
mechanism on the basis of reciprocal inhibitory con-
nections and the “bias signals” (or “votes”) from AC:

τbg · ḃgp = −bgp+ (2)

(Wac−bg · ac + bgbl + n) + Wbg · bg



bg = pos[tanh[bgp]]

where bgbl is a baseline activation, n is a noise vec-
tor with components uniformly drawn in [−n, n] ev-
ery 4s, and Wbg is the matrix of the BG’s lateral
connection weights.

The competition resulting from this dynamics al-
lows only one of the two units of BG to activate the
corresponding neuron of MC via one-to-one connec-
tions when its threshold thmc is overcome. To this
purpose, the units of MC, mc, have a step transfer
function with threshold:

mc = step[bg − thmc] (3)

All the connections weights of the cortical pathway
are fixed with the exception of AC-BG ones which
are modified with an Hebb rule modulated by the
dopamine signal from the DA-system (see Sect. 4.2):

∆Wac−bg = (4)
ηac−bg · pos[da− thda] ·mc · ac′

where ηac−bg is a learning coefficient and thda ensures
that only phasic DA bursts, and not “background”
(tonic) DA, cause learning. The quantities mc and
ac correspond to signals hypothesised in the scheme
proposed by Redgrave and Gurney (2006). Thus mc
represents the “motor-efference copy” – information
about the action performed just prior to the light
stimulus – and ac represents “context”.

4.2 The superior colliculus and dopaminer-
gic system

The superior colliculus (SC) is assumed to detect
sudden luminance variations. In primates, the su-
perficial layer of the SC receives input signals related
almost exclusively to visual data, while the deep lay-
ers also receive auditory and somatosensory stimuli
(Wallace et al., 1998).

The architecture of the simulated SC, which cap-
tures the essential features of the micro-anatomy of
the SC as reported in Binns and Salt (1997), consists
of two layers of neurons. The superficial layer (SCS)
receives afferent signals from the robot receptors and
the “deep layer” (SCD) sends an efferent signal to
the SNc. Both layers are composed of leaky neurons
with a hyperbolic tangent transfer function. SCS is
formed by two neurons, sc si and sc se, and SCD is
formed by one neuron, sc d. The two units of SCS
receive a connection from the same luminance sen-
sor L, denoted with l. The first neuron, sc si, sends
an inhibitory connection to the second neuron of the
same layer, sc se, whereas the latter sends an ex-
citatory connection to the neuron of the deep layer
sc d. The interplay between sc si and sc se, having
respectively a slow and a fast time constant τ (see

parameters below), cause an activation of sc d max-
imally responsive to luminance increases. More in
detail, the inhibitory unit sc si activates as follows:

τsc si · ˙sc sip = −sc sip + wl−sc si · l (5)

sc si = pos[tanh[sc sip]]

where wl−sc si is the connection weight between the
sensor L and sc si.

The excitatory unit sc se activates as follows:

τsc se · ˙sc sep = −sc sep+ (6)
(wl−sc se · l − wsc si−sc se · sc si)

sc se = pos[tanh[sc sep]]

where wl−sc se is the connection weight between the
sensor L and sc se, and wsc si−sc se is the lateral in-
hibitory connection weight of SCS.

The neuron of the deep layer, sc d, receives signals
from sc se via the weight wsc se−sc d and processes
them as follows:

τsc d · ˙sc dp = −sc dp + wsc se−sc d · sc se (7)

sc d = pos[tanh[sc dp]]

The SC output neuron sc d triggers dopamine
bursts da in SNc:

τda · ˙dap = −dap + (wsc−da · sc d) (8)

da = pos[tanh[dap]]

where wsc−da is the connection weight between SC
and SNc. The dopamine signal so produced modu-
lates the updating of the connection weights linking
AC to BG (see equation 4). As a result of this mech-
anism, luminance variations detected by the SC can
change the way signals are propagated through the
cortical pathway, thus influencing action selection in
favour of actions which cause the luminance varia-
tions themselves.

The parameters of the model were set as fol-
lows. Decay coefficients: τac = 600; τbg = 300;
τsc si = 2000; τsc se = 300; τsc d = 300; τda = 300.
Thresholds: thmc = 0.6; thda = 0.6. Learning coef-
ficients: ηac−bg = 0.01. Connection weights related
to SC: wl−sc se = 2; wl−sc si = 3; wsc si−sc se = 2;
wsc se−sc d = 1; wsc−da = 2.3; BG lateral connec-

tions: Wbg =
(

0 0.7
0.7 0

)
. The trained connections

between AC and BG were initially set to 0. All
other connections were set to 1. Other parameters:
bgbl = 0.15; n = 0.4.
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Figure 2: Recordings of the activation of some key units of the model during a test lasting 25min and simulating

“experiment 4” reported in Reed et al. (1996). The first two rows of the graph show the activation of the two neurons

of the BG (bg). The third and fourth layers show activations of the MC (mc). The fifth layer represents the light

stimulus signal and the durations of the VIs (“saw-like” line) starting from the last light signal. The sixth, seventh and

eighth rows report the activations of SC (sc se, sc si and sc d). The last row reports the dopamine bursts (da): the

gray horizontal line indicates the threshold (thda) that dopamine has to overcome to cause learning.

5 Results

Figure 2 and 3 show the activation of some key neu-
rons of the model during the simulation of experi-
ment 4 reported in Reed et al. (1996), lasting 25min.
Figure 3 shows that the activation that the two BG
neurons (first and second row) exhibit in time cor-
respond to the competition between the selection of
the two lever-press actions: the first neuron which
sends an activation to the corresponding unit in MC,
and makes it overcome the threshold thmc (third and
fourth row), triggers the corresponding action. Note
that the derivative discontinuities of the activation
of the BG’s units are due either to the noise reset,
happening every 4s, or to the reset of such units,
happening after every action execution. The figure
shows in particular the triggering of three actions:
(1) “Press lever 2”: this has no effects on the light;
(2) “Press lever 1”: this causes a light onset as it is
accomplished after the last VI terminates (the delay
between the activation of mc lever1 and the light on-
set is caused by the fact that the rat takes some time
to approach the lever); (3)“Press lever 1”: this has
no effects on the light as it is accomplished before
the current VI terminates.

Figure 2 shows that the rat selects actions ran-
domly during the first minutes of the test but then,
as learning goes on, it increases the selection of lever
1 steadily. In particular, the ratio of lever-1 presses
vs. lever-2 presses passes from 14:15 in the first five
minutes of the test to 34:8 in the last five minutes
(average over ten simulated rats). The latter ratio is
very similar to that of real rats (Reed et al., 1996),
approximately 4:1 (Figure 4).

These results demonstrate that the model succeeds
in exploiting what, in a biological setting, may be
interpreted as a neutral stimulus to trigger learning.
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Figure 3: A close-up of Figure 2. X-axis: time in seconds.

This learning process is made possible by the inter-
play of the SC with the dopamine system (SNc); fig-
ure 3 shows this process in more detail. Thus, when
the SC detects a variation of the light luminance (see
the “light” row of the graph) it causes DA bursts via
the SNc (see “da” row in the graph). A light increase
causes an activation of sc se which in turn causes a
strong activation of da via sc d. However, the acti-
vation of sc se is soon inhibited by the activation of
sc si so that the DA production goes below thresh-
old: in this way the SC manages to associate DA
only to the luminance variation and not to its level.
Overall, these mechanisms allow the SC to exploit its
responsiveness to light variations to trigger dopamine
bursts. These signals modify the synapses within the
basal ganglia so increasing the probabilities that the
same actions are performed in the future.
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6 Conclusions

This paper presented a computational model of
how the acquisition of conditioned responses can be
driven by neutral stimuli. In particular, the model’s
architecture incorporates the hypothesis that a pha-
sic dopamine burst (emanating from SNc) is trig-
gered by the detection of luminance changes by the
SC associated with an unpredicted stimulus (Red-
grave and Gurney, 2006). The model of SC im-
plements the micro-architecture postulated by Binns
and Salt (1997) on the basis of anatomical and phys-
iological data, and is indeed capable of detecting
rapid increases in luminance in an analogous way to
that shown in vivo (Wurtz and Albano, 1980). More-
over, the learning rule (equation 4) makes use of exci-
tatory afferent signals to basal ganglia invoked in the
hypothesis of Redgrave and Gurney (2006), namely
contextual input and motor-efference copy.

The model integrates these assumptions into a
complete architecture which has been successfully
used to control a simulated 3D robotic rat interact-
ing with a realistic simulated environment. Further,
the model was validated by reproducing the results
of a biological experiment dealing with action learn-
ing in a paradigm which is instrumental/operant in
nature but which uses no explicit reward (appeti-
tive stimulus). The results support the hypothesis
that the dopaminergic signals triggered by the su-
perior colliculus play a central role in learning the
causal relationships between an animal’s actions and
their environmental outcomes (Redgrave and Gur-
ney, 2006).

Future work will develop the model to demonstrate
how learning of action-outcome contingencies might
facilitate subsequent accomplishment of biologically
relevant goals as in, for example, the response pre-
conditioning experiments of St Claire-Smith and Ma-
cLaren (1983), described in the Introduction.

Future work might also tackle two limitations of
the current SC model: (1) The SC model is sensitive
only to increases of luminance, but not to decreases,
as the real SC. This simplification was used as a
more complex SC was not needed for the targeted
experiments. Computationally, it should be possible
to build a SC sensitive to both luminance increases
and decreases on the basis of the current SC input
module and a second similar input module with an
inhibitory unit having a time delay faster than the
one of the excitatory unit. (2) In this work, the light
is an abstract representation of the presence/absence
of the light stimulus, so it was not necessary to have
a SC with a topological architecture responding to
different positions of the luminance variation in the
environment as it happens in the real SC. Computa-
tionally, it should be possible to build a SC sensitive
to the location of luminance variation on the basis of
multiple copies of the current module of the SC so
as to form a 2D map of modules topologically corre-
sponding to the retina.
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